Nonequilibrium Spin-Glass Dynamics from Picoseconds to a Tenth of a Second

F. Belletti,¹ M. Cotallo,² A. Cruz,^{3,2} L. A. Fernandez,^{4,2} A. Gordillo-Guerrero,^{5,2} M. Guidetti,¹ A. Maiorano,^{1,2} F. Mantovani,¹ E. Marinari,⁶ V. Martin-Mayor,^{4,2} A. Muñoz Sudupe,⁴ D. Navarro,⁷ G. Parisi,⁶ S. Perez-Gaviro,² J. J. Ruiz-Lorenzo,^{5,2} S. F. Schifano,¹ D. Sciretti,² A. Tarancon,^{3,2} R. Tripiccione,¹ J. L. Velasco,² and D. Yllanes^{4,2}

¹Dipartimento di Fisica Università di Ferrara and INFN - Sezione di Ferrara, Ferrara, Italy

Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Zaragoza, Spain

³Departamento de Física Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain

⁴Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain

⁵Departamento de Física, Universidad de Extremadura, 06071 Badajoz, Spain

⁶Dipartimento di Fisica, INFM and INFN, Università di Roma "La Sapienza", 00185 Roma, Italy

⁷D. de Ingeniería, Electrónica y Comunicaciones and 13A, U. de Zaragoza, 50018 Zaragoza, Spain (Received 11 April 2008; revised manuscript received 23 June 2008; published 6 October 2008)

We study numerically the nonequilibrium dynamics of the Ising spin glass, for a time spanning 11 orders of magnitude, thus approaching the experimentally relevant scale (i.e., seconds). We introduce novel analysis techniques to compute the coherence length in a model-independent way. We present strong evidence for a replicon correlator and for overlap equivalence. The emerging picture is compatible with noncoarsening behavior.

value).

DOI: 10.1103/PhysRevLett.101.157201

Spin glasses [1] (SG) exhibit remarkable features, including slow dynamics and a complex space of states: they are a paradigmatic problem because of its many applications to glassy behavior, optimization, biology, financial markets, social dynamics, etc.

Experiments on SG [1,2] focus on nonequilibrium dynamics. In the simplest protocol, isothermal aging, the SG is cooled as fast as possible to a subcritical working temperature, $T < T_c$, let to equilibrate for a *waiting time*, t_w , and probed at a later time, $t + t_w$. The thermoremanent magnetization is found to be a function of t/t_w (full aging), for $10^{-3} < t/t_w < 10$ and 50 s $< t_w < 10^4$ s [3] (see, however, [4]). The growing size of the coherent domains, the coherence-length ξ , is also measured [5,6]. Two features emerge: (i) the lower T, the slower the growth of $\xi(t_w)$ and (ii) $\xi \sim 100$ lattice spacings, even for $T \sim T_c$ and $t_w \sim$ 10⁴ s [5].

The sluggish dynamics arises from a thermodynamic transition at T_c [7–9]. There is a sustained theoretical debate on the properties of the (unreachable in human times) equilibrium low T SG phase, which is nevertheless relevant to (basically nonequilibrium) experiments [10]. The main scenarios are the droplets [11], replica symmetry breaking (RSB) [12], and the intermediate trivialnontrivial (TNT) picture [13].

Droplets expects two equilibrium states related by global spin reversal. The SG order parameter, the spin overlap q, takes only two values $q = \pm q_{\rm EA}$. In the RSB scenario an infinite number of pure states influence the dynamics [12,14,15], so all $-q_{\rm EA} \le q \le q_{\rm EA}$ are reachable. In TNT the SG phase is similar to an antiferromagnet with random boundary conditions: q behaves as for RSB systems but, similar to droplets, the surface-tovolume ratio of the largest thermally activated domains vanishes (i.e., the link-overlap defined below takes a single

PACS numbers: 75.10.Nr, 75.40.Gb, 75.40.Mg, 75.50.Lk

Because of superuniversality [16], the isothermal aging of basically all coarsening systems is qualitatively the same (droplets being analogous to a disguised ferromagnet [17]). For $T < T_c$ the dynamics consists in the growth of compact domains, where the spin overlap takes one of the values $q = \pm q_{\rm EA}$. The corresponding growth law, $\xi(t)$, completely encodes all time dependencies. The antiferromagnet analogy suggests a similar TNT aging.

Since in the RSB scenario q = 0 equilibrium states do exist, the nonequilibrium dynamics starts with a vanishing order parameter and remains there forever. The replicon, a critical mode analogous to magnons in Heisenberg ferromagnets, is present for all $T < T_c$ [18]. Furthermore, q is not a privileged observable (overlap equivalence [14]): the link overlap displays equivalent aging behavior.

These theories need numerics to be quantitative [19-27]. Simulations so far have been too short: experimental scales are at ~ 100 s, while typical nonequilibrium simulations reach $\sim 10^{-5}$ s (one Monte Carlo step, MCS, corresponds to 10^{-12} s [1]). Over the years, high-performance computers have been built for SG simulations [28–30].

Here we report on a large simulation (10¹¹ MCS \sim 0.1 s) of an instantaneous SG quench protocol performed on the Janus computer [30], which allows us to reach experimental times by mild extrapolations. Aging is investigated as a function of time and temperature. We obtain model-independent determinations of the SG coherence length ξ . Conclusive evidence is presented for a critical correlator associated with the replicon mode. We observe nontrivial aging in the link correlation (a nonequilibrium test of overlap equivalence [14]). We conclude that, up to experimental scales, SG dynamics is not coarsening like.

FIG. 1 (color online). Fit parameters, A and α ($C(t, t_w) = A(t_w)(1 + t/t_w)^{-1/\alpha(t_w)}$) vs t_w for temperatures below T_c (T = 0.6 line: fit, for $t_w > 10^5$, to $\alpha(t_w) = \alpha_0 + \alpha_1 \log t_w + \alpha_2 \log^2 t_w$, $\alpha_0 = 6.35795$, $\alpha_1 = 0.18605$, $\alpha_2 = -0.00351835$, diagonal χ^2 /d.o.f. = 66.26/63). Oscillations are due to strong correlations of $\alpha(t_w)$ at neighboring times (the fit and χ^2 /d.o.f. do not change if we bin data in blocks of 5 consecutive t_w).

The D = 3 Edwards-Anderson Hamiltonian is

$$\mathcal{H} = -\sum_{\langle \mathbf{x}, \mathbf{y} \rangle} J_{\mathbf{x}, \mathbf{y}} \sigma_{\mathbf{x}} \sigma_{\mathbf{y}}, \tag{1}$$

 $\langle\langle \cdots \rangle$ denote nearest neighbors). Spins $\sigma_x = \pm 1$ sit at the nodes, x, of a cubic lattice of size L and periodic boundary conditions. The couplings (quenched variables) $J_{x,y} = \pm 1$ are chosen randomly with 50% probability. For each set of couplings (a sample), we simulate two independent systems, $\{\sigma_x^{(1)}\}$ and $\{\sigma_x^{(2)}\}$. We denote by $\overline{(\cdots)}$ the average over the couplings. Model (1) has a SG transition at $T_c = 1.101(5)$ [31].

Our L = 80 systems evolve with Heat-Bath dynamics [32], which is in the Universality Class of physical evolution. Fully disordered starting spin configurations are placed at the working temperature (96 samples at $T = 0.8 \approx 0.73T_c$ and at $T = 0.6 \approx 0.54T_c$; 64 at $T = 0.7 \approx 0.64T_c$). We also perform shorter simulations (32 samples) at T_c , and L = 40 and L = 24 runs to check for finite-size effects.

A crucial quantity is the two-times correlation function [19,20,23]: $[c_x(t, t_w) \equiv \sigma_x(t + t_w)\sigma_x(t_w)]$

$$C(t, t_w) = \overline{L^{-3} \sum_{\mathbf{x}} c_{\mathbf{x}}(t, t_w)},$$
(2)

linearly related to the real part of the a.c. susceptibility at waiting time t_w and frequency $\omega = \pi/t$.

To check for full aging [3] in a systematic way, we fit $C(t, t_w)$ as $A(t_w)(1 + t/t_w)^{-1/\alpha(t_w)}$ in the range $t_w \le t \le 10t_w$ [33], obtaining fair fits for all $t_w > 10^3$; see Fig. 1. To be consistent with the experimental claim of full-aging behavior for $10^{14} < t_w < 10^{16}$ [3], $\alpha(t_w)$ should be constant in this t_w range. Although $\alpha(t_w)$ keeps growing for our largest times (with the large errors in [23] it seemed

constant for $t_w > 10^4$), its growth slows down. The behavior at $t_w = 10^{16}$ seems beyond reasonable extrapolation.

The coherence length is studied from the correlations of the replica field $q_x(t_w) \equiv \sigma_x^{(1)}(t_w)\sigma_x^{(2)}(t_w)$,

$$C_4(\mathbf{r}, t_w) = \overline{L^{-3} \sum_{\mathbf{x}} q_{\mathbf{x}}(t_w) q_{\mathbf{x}+\mathbf{r}}(t_w)}.$$
(3)

For $T < T_c$, it is well described by [12,21]

$$C_4(\mathbf{r}, t_w) \sim r^{-a} e^{-(r/\xi(t_w))^b}, \qquad a \simeq 0.5, \qquad b \simeq 1.5.$$
(4)

The actual value of *a* is relevant. For coarsening dynamics a = 0, while in a RSB scenario a > 0 and $C_4(r, t_w)$ vanishes at long times for fixed $r/\xi(t_w)$. At T_c , the latest estimate is $a = 1 + \eta = 0.616(9)$ [31].

To study a independently of a particular Ansatz as (4) we consider the integrals

$$I_k(t_w) = \int_0^\infty \mathrm{d}r r^k C_4(r, t_w), \tag{5}$$

(e.g., the SG susceptibility is $\chi^{\text{SG}}(t_w) = 4\pi I_2(t_w)$). As we assume $L \gg \xi(t_w)$ we safely reduce the upper limit to L/2. If a scaling form $C_4(r, t_w) \sim r^{-a} f[r/\xi(t_w)]$ is adequate at large r, then $I_k(t_w) \propto [\xi(t_w)]^{k+1-a}$. It follows that $\xi_{k,k+1}(t_w) \equiv I_{k+1}(t_w)/I_k(t_w)$ is proportional to $\xi(t_w)$ and $I_1(t_w) \propto \xi_{k,k+1}^{2-a}$. We find $\xi^{(2)}(t_w) \approx 0.8\xi_{1,2}(t_w)$, where $\xi^{(2)}$ is the noisy second-moment estimate [9]. Furthermore, for $\xi_{1,2} > 3$, we find $\xi_{0,1}(t_w) \approx 0.46\xi_{1,2}(t_w)$, and $\xi^{\text{fit}}(t_w) =$ $1.06\xi_{1,2}(t_w)$, (ξ^{fit} from a fit to (4) with a = 0.4).

Note that, when $\xi \ll L$, irrelevant distances $r \gg \xi$ largely increase statistical errors for I_k . Fortunately, the very same problem was encountered in the analysis of correlated time series [34], and we may borrow the cure [35].

The largest t_w where L = 80 still represents $L = \infty$ physics follows from finite-size scaling [32]: for a given

FIG. 2 (color online). Left: SG coherence length $\xi_{1,2}$ vs waiting time, for $T \leq T_c$. Right: $\xi_{1,2}$ vs I_1 , $(\xi_{1,2} \propto I_1^{1/(2-a)})$. Also shown data for the site-diluted Ising model $(\xi_{1,2} \text{ and } I_1 \text{ rescaled})$ by 2). Full lines: Ising (coarsening, a = 0) and SG, $a(T_c) = 0.616$ [31]. Inset: $[\xi_{1,2}^L(t_w) - \xi_{1,2}^\infty(t_w)]/L$ vs $\xi_{1,2}^\infty(t_w)/L$ for T = 0.8 and L = 24, 40 and 80 $(\xi_{1,2}^\infty(t_w) \text{ from a fit } \xi_{1,2}(t_w) = A(T)t_w^{1/z(T)}$ for L = 80 in the range $3 < \xi_{1,2} < 10$).

numerical accuracy, one should have $L \ge k\xi_{1,2}(t_w)$. To compute k, we compare $\xi_{1,2}^L$ for L = 24, 40 and 80 with $\xi_{1,2}^\infty$ estimated with the power law described below (Fig. 2, inset). It is clear that the safe range is $L \ge 7\xi_{1,2}(t_w)$ at T = 0.8 (at T_c the safety bound is $L \ge 6\xi_{1,2}(t_w)$).

Our results for $\xi_{1,2}$ are shown in Fig. 2. Note for T = 0.8the finite-size change of regime at $t_w = 10^9 (\xi_{1,2} \sim 11)$. We find fair fits to $\xi(t_w) = A(T)t_w^{1/z(T)}$: $z(T_c) = 6.86(16)$, z(0.8) = 9.42(15), z(0.7) = 11.8(2) and z(0.6) = 14.1(3), in good agreement with previous numerical and experimental findings $z(T) = z(T_c)T_c/T$ [5,21]. Our fits are for $3 \le \xi \le 10$, to avoid both finite-size and lattice discretization effects. Extrapolating to experimental times ($t_w =$ $10^{14} \sim 100$ s), we find $\xi = 14.0(3)$, 21.2(6), 37.0(14), and 119(9) for T = 0.6, T = 0.7, T = 0.8 and $T = 1.1 \approx T_c$, respectively, which nicely compares with experiments [5,6].

In Fig. 2, we also explore the scaling of I_1 as a function of $\xi_{1,2}$ ($I_1 \propto \xi^{2-a}$). The nonequilibrium data for T = 1.1scales with a = 0.585(12). The deviation from the *equilibrium* estimate a = 0.616(9) [31] is at the limit of statistical significance (if present, it would be due to scaling corrections). For T = 0.8, 0.7, and 0.6, we find a =0.442(11), 0.355(15), and 0.359(13), respectively (the residual *T* dependence is probably due to critical effects still felt at T = 0.8). Note that ground state computations for $L \le 14$ yielded $a(T = 0) \approx 0.4$ [37]. These numbers differ both from critical and coarsening dynamics (a = 0).

We finally address the aging properties of $C_{\text{link}}(t, t_w)$

$$C_{\text{link}}(t, t_w) = \overline{\sum_{\langle \mathbf{x}, \mathbf{y} \rangle} c_{\mathbf{x}}(t, t_w) c_{\mathbf{y}}(t, t_w)} / (3L^3).$$
(6)

 C_{link} , still experimentally inaccessible, does not vanish if the configurations at $t + t_w$ and t_w differ by the spin inversion of a compact region of half the system size.

It is illuminating to replace t with $C^2(t, t_w)$ as an independent variable; Figs. 3 and 4. For a coarsening dynamics C_{link} will be C independent for $C^2 < q_{\text{EA}}^2$ and large t_w (relevant system excitations are the spin reversal of compact droplets not affecting C_{link}), while in a RSB system

FIG. 3 (color online). For appropriate t_w and L, the nonequilibrium $C_{\text{link}}(t, t_w)$ vs $C^2(t, t_w)$ at T = 0.7, coincides with equilibrium $Q_{\text{link}}|_q$ vs q^2 (full lines, equilibrium data from [40] at T = 0.7, see text). From the length-time dictionary up to L = 20 we predict the equilibrium curve for L = 33.

new states are continuously found as time goes by: we expect a non constant C^2 dependence even if $C < q_{\text{EA}}$ [38].

By general arguments, the nonequilibrium C_{link} at finite *times* coincides with equilibrium correlation functions for systems of finite *size* [10]; see Fig. 3. We also predict the q^2 dependency of the *equilibrium* conditional expectation $Q_{\text{link}}|_q$ up to L = 33 [Q_{link} is just $C_4(r = 1)$, while q is the spatial average of q_x , Eq. (3)].

As for the shape of the curve $C_{\text{link}} = f(C^2, t_w)$, Fig. 4 bottom, the t_w dependency is residual. Within our time window, C_{link} is not constant for $C < q_{\text{EA}}$. For comparison (inset) we show the qualitatively different curves for a coarsening dynamics. We studied the derivative dC_{link}/dC^2 , for $C^2 < q_{\text{EA}}^2$, Fig. 4 top. We first smooth the curves by fitting $C_{\text{link}} = f(C^2)$ to the lowest order polynomial allowing a fair fit (seventh order for $t_w \le 2^{25}$, sixth for larger t_w), whose derivative was taken afterwards (jackknife statistical errors).

Furthermore, we have extrapolated both $C_{\text{link}}(t = rt_w, t_w)$ and $C(t = rt_w, t_w)$ to $t_w \approx 10^{14}$ (~100 s), for $r = 8, 4, \ldots, \frac{1}{16}$ [39]. The extrapolated points for $t_w = 10^{14}$ fall on a straight line whose slope is plotted in the upper panel (thick line). The derivative is nonvanishing for $C^2 < q_{\text{EA}}^2$, for the experimental time scale.

In summary, Janus [30] halves the (logarithmic) time gap between simulations and nonequilibrium spin-glass experiments. We analyzed the simplest temperature quench, finding numerical evidence for a noncoarsening dynamics, at least up to experimental times (see also [27]). Let us highlight: *nonequilibrium* overlap equivalence (Figs. 3 and 4); nonequilibrium scaling functions reproducing *equilibrium* conditional expectations in finite systems

FIG. 4 (color online). Bottom: $C_{\text{link}}(t, t_w)$ vs $C^2(t, t_w)$ for T = 0.6 and some of our largest t_w (vertical line: q_{EA}^2 from [24]). We also show our extrapolation of the C_{link} vs C^2 curve to $t_w = 10^{14}$ (~100 s, see text). Top: Derivative of C_{link} with respect to C^2 for T = 0.6. The horizontal line corresponds to the slope of a linear fit of $t_w = 10^{14}$ extrapolations (the line width equals twice the error). Inset: As in bottom panel, for the ferromagnetic site-diluted D = 2 Ising model (same simulation of Fig. 2).

(Fig. 3); and a nonequilibrium replicon exponent compatible with equilibrium computations [37]. The growth of the coherence length sensibly extrapolates to $t_w = 100$ s (our analysis of dynamic heterogeneities [26,27] will appear elsewhere [36]). Exploring with Janus nonequilibrium dynamics up to the *seconds* scale will allow the investigation of many intriguing experiments.

We corresponded with M. Hasenbusch, A. Pelissetto, and E. Vicari. Janus was supported by EU FEDER funds (UNZA05-33-003, MEC-DGA, Spain), and developed in collaboration with ETHIab. We were partially supported by MEC (Spain), through Contracts No. FIS2006-08533, FIS2007-60977, FPA2004-02602, TEC2007-64188; by CAM (Spain), and by Microsoft.

- [1] J. A. Mydosh, *Spin Glasses: an Experimental Introduction* (Taylor and Francis, London, 1993).
- [2] E. Vincent *et al.*, in *Lecture Notes in Physics*, edited by M. Rubí and C. Pérez-Vicente (Springer, New York, 1997), Vol. 492.
- [3] G. F. Rodriguez, G. G. Kenning, and R. Orbach, Phys. Rev. Lett. 91, 037203 (2003).
- [4] V. Dupuis et al., Pramana J. Phys. 64, 1109 (2005).
- [5] Y.G. Joh et al., Phys. Rev. Lett. 82, 438 (1999).
- [6] F. Bert et al., Phys. Rev. Lett. 92, 167203 (2004).
- [7] K. Gunnarsson et al., Phys. Rev. B 43, 8199 (1991).
- [8] M. Palassini and S. Caracciolo, Phys. Rev. Lett. 82, 5128 (1999).
- [9] H.G. Ballesteros et al., Phys. Rev. B 62, 14237 (2000).
- [10] S. Franz *et al.*, Phys. Rev. Lett. **81**, 1758 (1998); J. Stat. Phys. **97**, 459 (1999).
- [11] W. L. McMillan, J. Phys. C 17, 3179 (1984); A. J. Bray and M. A. Moore, in *Lecture Notes in Physics*, edited by J. L. van Hemmen and I. Morgensten (Springer, New York, 1987); D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601 (1986); Phys. Rev. B 38, 386 (1988).
- [12] E. Marinari et al., J. Stat. Phys. 98, 973 (2000).
- [13] F. Krzakala and O. C. Martin, Phys. Rev. Lett. 85, 3013 (2000); M. Palassini and A. P. Young, Phys. Rev. Lett. 85, 3017 (2000).
- [14] G. Parisi and F. Ricci-Tersenghi, J. Phys. A 33, 113 (2000).
- [15] P. Contucci and C. Giardina, J. Stat. Phys. **126**, 917 (2007); Ann. Henri Poincaré **6**, 915 (2005).
- [16] D.S. Fisher and D.A. Huse, Phys. Rev. B 38, 373 (1988).
- [17] Temperature chaos could still spoil the analogy [16].

- [18] T. Temesvari, C. De Dominicis, and I. Kondor, J. Phys. A 27, 7569 (1994).
- [19] J. Kisker et al., Phys. Rev. B 53, 6418 (1996).
- [20] H. Rieger, J. Phys. A 26, L615 (1993).
- [21] E. Marinari et al., J. Phys. A 33, 2373 (2000).
- [22] L. Berthier and J.-P. Bouchaud, Phys. Rev. B 66, 054404 (2002).
- [23] S. Jimenez et al., J. Phys. A 36, 10755 (2003).
- [24] S. Perez Gaviro, J.J. Ruiz-Lorenzo, and A. Tarancón, J. Phys. A 39, 8567 (2006).
- [25] S. Jimenez, V. Martin-Mayor, and S. Perez-Gaviro, Phys. Rev. B 72, 054417 (2005).
- [26] L. C. Jaubert *et al.*, J. Stat. Mech. (2007) P05001; H. E. Castillo *et al.*, Phys. Rev. Lett. 88, 237201 (2002); H. E. Castillo *et al.*, Phys. Rev. B 68, 134442 (2003).
- [27] C. Aron et al., J. Stat. Mech. (2008) P05016.
- [28] A. Cruz et al., Comput. Phys. Commun. 133, 165 (2001).
- [29] A. Ogielski, Phys. Rev. B 32, 7384 (1985).
- [30] F. Belletti *et al.*, Comput. Sci. Eng. 8, 41 (2006); Comput.
 Phys. Commun. 178, 208 (2008); arXiv:0710.3535.
- [31] M. Hasenbusch, A. Pelissetto, and E. Vicari, J. Stat. Mech. L02001 (2008); (private communication).
- [32] See, e.g., D. J. Amit and V. Martin-Mayor, *Field Theory, the Renormalization Group and Critical Phenomena* (World-Scientific, Singapore, 2005), 3rd ed.
- [33] Data at different t and t_w are correlated, so we consider only diagonal terms in the covariance matrix. Time correlations are considered by first forming jackknife blocks [32] (JKB) with the data for different samples, then minimizing this diagonal χ^2 for each JKB [23].
- [34] See, e.g., A. D. Sokal, in *Functional Integration: Basics and Applications (Cargèse school 1996)*, edited by C. DeWitt-Morette, P. Cartier, and A. Folacci (Plenum, New Brunswick, 1997).
- [35] We integrate $C_4(r, t_w)$ up to $r^{\text{cutoff}}(t_w)$, where $C_4(r^{\text{cutoff}}(t_w), t_w)$ becomes less than thrice its statistical error. We estimate the (small) remaining contribution, by fitting to (4) then integrating the fitted function from $r^{\text{cutoff}} 1$ to L/2. Details will be given elsewhere [36].
- [36] (Janus Collaboration) (to be published).
- [37] E. Marinari and G. Parisi, Phys. Rev. Lett. 86, 3887 (2001).
- [38] $C_{\text{link}} = C^2$ in the full-RSB Sherrington-Kirkpatrick model.
- [39] For each r, both the link and the spin correlation functions are independently fitted to $a_r + b_r t_w^{-c_r}$ (fits are stable for $t_w > 10^5$ with $c_r \approx 0.5$). These fits are then used to extrapolate the two correlation functions to $t_w = 10^{14}$.
- [40] P. Contucci *et al.*, Phys. Rev. Lett. **99**, 057206 (2007); P. Contucci *et al.*, Phys. Rev. Lett. **96**, 217204 (2006).