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We study numerically the nonequilibrium dynamics of the Ising spin glass, for a time spanning

11 orders of magnitude, thus approaching the experimentally relevant scale (i.e., seconds). We introduce

novel analysis techniques to compute the coherence length in a model-independent way. We present

strong evidence for a replicon correlator and for overlap equivalence. The emerging picture is compatible

with noncoarsening behavior.
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Spin glasses [1] (SG) exhibit remarkable features, in-
cluding slow dynamics and a complex space of states: they
are a paradigmatic problem because of its many applica-
tions to glassy behavior, optimization, biology, financial
markets, social dynamics, etc.

Experiments on SG [1,2] focus on nonequilibrium dy-
namics. In the simplest protocol, isothermal aging, the SG
is cooled as fast as possible to a subcritical working
temperature, T < Tc, let to equilibrate for a waiting time,
tw, and probed at a later time, tþ tw. The thermoremanent
magnetization is found to be a function of t=tw (full aging),
for 10�3 < t=tw < 10 and 50 s< tw < 104 s [3] (see, how-
ever, [4]). The growing size of the coherent domains, the
coherence-length �, is also measured [5,6]. Two features
emerge: (i) the lower T, the slower the growth of �ðtwÞ and
(ii) �� 100 lattice spacings, even for T � Tc and tw �
104 s [5].

The sluggish dynamics arises from a thermodynamic
transition at Tc [7–9]. There is a sustained theoretical
debate on the properties of the (unreachable in human
times) equilibrium low T SG phase, which is nevertheless
relevant to (basically nonequilibrium) experiments [10].
The main scenarios are the droplets [11], replica symmetry
breaking (RSB) [12], and the intermediate trivial-
nontrivial (TNT) picture [13].

Droplets expects two equilibrium states related by
global spin reversal. The SG order parameter, the spin
overlap q, takes only two values q ¼ �qEA. In the RSB
scenario an infinite number of pure states influence the
dynamics [12,14,15], so all �qEA � q � qEA are reach-
able. In TNT the SG phase is similar to an antiferro-
magnet with random boundary conditions: q behaves as
for RSB systems but, similar to droplets, the surface-to-
volume ratio of the largest thermally activated domains

vanishes (i.e., the link-overlap defined below takes a single
value).
Because of superuniversality [16], the isothermal aging

of basically all coarsening systems is qualitatively the same
(droplets being analogous to a disguised ferromagnet [17]).
For T < Tc the dynamics consists in the growth of compact
domains, where the spin overlap takes one of the values
q ¼ �qEA. The corresponding growth law, �ðtÞ, com-
pletely encodes all time dependencies. The antiferromag-
net analogy suggests a similar TNT aging.
Since in the RSB scenario q ¼ 0 equilibrium states do

exist, the nonequilibrium dynamics starts with a vanishing
order parameter and remains there forever. The replicon, a
critical mode analogous to magnons in Heisenberg ferro-
magnets, is present for all T < Tc [18]. Furthermore, q is
not a privileged observable (overlap equivalence [14]): the
link overlap displays equivalent aging behavior.
These theories need numerics to be quantitative [19–27].

Simulations so far have been too short: experimental scales
are at �100 s, while typical nonequilibrium simulations
reach �10�5 s (one Monte Carlo step, MCS, corresponds
to 10�12 s [1]). Over the years, high-performance com-
puters have been built for SG simulations [28–30].
Here we report on a large simulation (1011 MCS�

0:1 s) of an instantaneous SG quench protocol performed
on the Janus computer [30], which allows us to reach
experimental times by mild extrapolations. Aging is inves-
tigated as a function of time and temperature. We obtain
model-independent determinations of the SG coherence
length �. Conclusive evidence is presented for a critical
correlator associated with the replicon mode. We observe
nontrivial aging in the link correlation (a nonequilibrium
test of overlap equivalence [14]). We conclude that, up to
experimental scales, SG dynamics is not coarsening like.
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The D ¼ 3 Edwards-Anderson Hamiltonian is

H ¼ �X

hx;yi
Jx;y�x�y; (1)

(h� � �i denote nearest neighbors). Spins �x ¼ �1 sit at the
nodes, x, of a cubic lattice of size L and periodic boundary
conditions. The couplings (quenched variables) Jx;y ¼ �1

are chosen randomly with 50% probability. For each set of
couplings (a sample), we simulate two independent sys-

tems, f�ð1Þ
x g and f�ð2Þ

x g. We denote by ð� � �Þ the average
over the couplings. Model (1) has a SG transition at Tc ¼
1:101ð5Þ [31].

Our L ¼ 80 systems evolve with Heat-Bath dynamics
[32], which is in the Universality Class of physical evolu-
tion. Fully disordered starting spin configurations are
placed at the working temperature (96 samples at T ¼
0:8 � 0:73Tc and at T ¼ 0:6 � 0:54Tc; 64 at T ¼ 0:7 �
0:64Tc). We also perform shorter simulations (32 samples)
at Tc, and L ¼ 40 and L ¼ 24 runs to check for finite-size
effects.

A crucial quantity is the two-times correlation function
[19,20,23]: [cxðt; twÞ � �xðtþ twÞ�xðtwÞ]

Cðt; twÞ ¼ L�3
X

x

cxðt; twÞ; (2)

linearly related to the real part of the a.c. susceptibility at
waiting time tw and frequency ! ¼ �=t.

To check for full aging [3] in a systematic way, we fit

Cðt; twÞ as AðtwÞð1þ t=twÞ�1=�ðtwÞ in the range tw � t �
10tw [33], obtaining fair fits for all tw > 103; see Fig. 1. To
be consistent with the experimental claim of full-aging
behavior for 1014 < tw < 1016 [3], �ðtwÞ should be con-
stant in this tw range. Although �ðtwÞ keeps growing for
our largest times (with the large errors in [23] it seemed

constant for tw > 104), its growth slows down. The behav-
ior at tw ¼ 1016 seems beyond reasonable extrapolation.
The coherence length is studied from the correlations of

the replica field qxðtwÞ � �ð1Þ
x ðtwÞ�ð2Þ

x ðtwÞ,
C4ðr; twÞ ¼ L�3

X

x

qxðtwÞqxþrðtwÞ: (3)

For T < Tc, it is well described by [12,21]

C4ðr; twÞ � r�ae�ðr=�ðtwÞÞb ; a ’ 0:5; b ’ 1:5:

(4)

The actual value of a is relevant. For coarsening dynamics
a ¼ 0, while in a RSB scenario a > 0 and C4ðr; twÞ van-
ishes at long times for fixed r=�ðtwÞ. At Tc, the latest
estimate is a ¼ 1þ � ¼ 0:616ð9Þ [31].
To study a independently of a particular Ansatz as (4)

we consider the integrals

IkðtwÞ ¼
Z 1

0
drrkC4ðr; twÞ; (5)

(e.g., the SG susceptibility is �SGðtwÞ ¼ 4�I2ðtwÞ). As
we assume L � �ðtwÞ we safely reduce the upper limit
to L=2. If a scaling form C4ðr; twÞ � r�af½r=�ðtwÞ	 is
adequate at large r, then IkðtwÞ / ½�ðtwÞ	kþ1�a. It follows
that �k;kþ1ðtwÞ � Ikþ1ðtwÞ=IkðtwÞ is proportional to �ðtwÞ
and I1ðtwÞ / �2�a

k;kþ1. We find �ð2ÞðtwÞ � 0:8�1;2ðtwÞ, where
�ð2Þ is the noisy second-moment estimate [9]. Furthermore,
for �1;2 > 3, we find �0;1ðtwÞ � 0:46�1;2ðtwÞ, and �fitðtwÞ ¼
1:06�1;2ðtwÞ, (�fit from a fit to (4) with a ¼ 0:4).
Note that, when � 
 L, irrelevant distances r � �

largely increase statistical errors for Ik. Fortunately, the
very same problem was encountered in the analysis of
correlated time series [34], and we may borrow the cure
[35].
The largest tw where L ¼ 80 still represents L ¼ 1

physics follows from finite-size scaling [32]: for a given
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FIG. 2 (color online). Left: SG coherence length �1;2 vs wait-

ing time, for T � Tc. Right: �1;2 vs I1, (�1;2 / I1=ð2�aÞ
1 ). Also

shown data for the site-diluted Ising model (�1;2 and I1 rescaled
by 2). Full lines: Ising (coarsening, a ¼ 0) and SG, aðTcÞ ¼
0:616 [31]. Inset: ½�L

1;2ðtwÞ � �1
1;2ðtwÞ	=L vs �1

1;2ðtwÞ=L for T ¼
0:8 and L ¼ 24, 40 and 80 (�1

1;2ðtwÞ from a fit �1;2ðtwÞ ¼
AðTÞt1=zðTÞw for L ¼ 80 in the range 3< �1;2 < 10).
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FIG. 1 (color online). Fit parameters, A and � (Cðt; twÞ ¼
AðtwÞð1þ t=twÞ�1=�ðtwÞ) vs tw for temperatures below Tc (T ¼
0:6 line: fit, for tw > 105, to �ðtwÞ ¼ �0 þ �1 logtw þ �2log

2tw,
�0 ¼ 6:357 95, �1 ¼ 0:186 05, �2 ¼ �0:003 518 35, diagonal
�2=d:o:f: ¼ 66:26=63). Oscillations are due to strong correla-
tions of �ðtwÞ at neighboring times (the fit and �2=d:o:f: do not
change if we bin data in blocks of 5 consecutive tw).
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numerical accuracy, one should have L � k�1;2ðtwÞ. To
compute k, we compare �L

1;2 for L ¼ 24, 40 and 80 with

�1
1;2 estimated with the power law described below (Fig. 2,

inset). It is clear that the safe range is L � 7�1;2ðtwÞ at T ¼
0:8 (at Tc the safety bound is L � 6�1;2ðtwÞ).

Our results for �1;2 are shown in Fig. 2. Note for T ¼ 0:8
the finite-size change of regime at tw ¼ 109(�1;2 � 11). We

find fair fits to �ðtwÞ ¼ AðTÞt1=zðTÞw : zðTcÞ ¼ 6:86ð16Þ,
zð0:8Þ ¼ 9:42ð15Þ, zð0:7Þ ¼ 11:8ð2Þ and zð0:6Þ ¼ 14:1ð3Þ,
in good agreement with previous numerical and experi-
mental findings zðTÞ ¼ zðTcÞTc=T [5,21]. Our fits are for
3 � � � 10, to avoid both finite-size and lattice discreti-
zation effects. Extrapolating to experimental times (tw ¼
1014 � 100 s), we find � ¼ 14:0ð3Þ, 21.2(6), 37.0(14), and
119(9) for T ¼ 0:6, T ¼ 0:7, T ¼ 0:8 and T ¼ 1:1 � Tc,
respectively, which nicely compares with experiments
[5,6].

In Fig. 2, we also explore the scaling of I1 as a function
of �1;2 (I1 / �2�a). The nonequilibrium data for T ¼ 1:1
scales with a ¼ 0:585ð12Þ. The deviation from the equi-
librium estimate a ¼ 0:616ð9Þ [31] is at the limit of statis-
tical significance (if present, it would be due to scaling
corrections). For T ¼ 0:8, 0.7, and 0.6, we find a ¼
0:442ð11Þ, 0.355(15), and 0.359(13), respectively (the re-
sidual T dependence is probably due to critical effects still
felt at T ¼ 0:8). Note that ground state computations for
L � 14 yielded aðT ¼ 0Þ � 0:4 [37]. These numbers dif-
fer both from critical and coarsening dynamics (a ¼ 0).

We finally address the aging properties of Clinkðt; twÞ
Clinkðt; twÞ ¼

X

hx;yi
cxðt; twÞcyðt; twÞ=ð3L3Þ: (6)

Clink, still experimentally inaccessible, does not vanish if
the configurations at tþ tw and tw differ by the spin
inversion of a compact region of half the system size.

It is illuminating to replace t with C2ðt; twÞ as an inde-
pendent variable; Figs. 3 and 4. For a coarsening dynamics
Clink will be C independent for C2 < q2EA and large tw
(relevant system excitations are the spin reversal of com-
pact droplets not affecting Clink), while in a RSB system

new states are continuously found as time goes by: we
expect a non constantC2 dependence even ifC< qEA [38].
By general arguments, the nonequilibrium Clink at finite

times coincides with equilibrium correlation functions for
systems of finite size [10]; see Fig. 3. We also predict the q2

dependency of the equilibrium conditional expectation
Qlinkjq up to L ¼ 33 [Qlink is just C4ðr ¼ 1Þ, while q is

the spatial average of qx, Eq. (3)].
As for the shape of the curve Clink ¼ fðC2; twÞ, Fig. 4

bottom, the tw dependency is residual. Within our time
window, Clink is not constant for C< qEA. For comparison
(inset) we show the qualitatively different curves for a
coarsening dynamics. We studied the derivative
dClink=dC

2, for C2 < q2EA, Fig. 4 top. We first smooth the
curves by fitting Clink ¼ fðC2Þ to the lowest order poly-
nomial allowing a fair fit (seventh order for tw � 225, sixth
for larger tw), whose derivative was taken afterwards (jack-
knife statistical errors).
Furthermore, we have extrapolated both Clinkðt ¼

rtw; twÞ and Cðt ¼ rtw; twÞ to tw � 1014 (�100 s), for r ¼
8; 4; . . . ; 1

16 [39]. The extrapolated points for tw ¼ 1014 fall

on a straight line whose slope is plotted in the upper panel
(thick line). The derivative is nonvanishing for C2 < q2EA,
for the experimental time scale.
In summary, Janus [30] halves the (logarithmic) time

gap between simulations and nonequilibrium spin-glass
experiments. We analyzed the simplest temperature
quench, finding numerical evidence for a noncoarsening
dynamics, at least up to experimental times (see also [27]).
Let us highlight: nonequilibrium overlap equivalence
(Figs. 3 and 4); nonequilibrium scaling functions reproduc-
ing equilibrium conditional expectations in finite systems
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(Fig. 3); and a nonequilibrium replicon exponent compat-
ible with equilibrium computations [37]. The growth of the
coherence length sensibly extrapolates to tw ¼ 100 s (our
analysis of dynamic heterogeneities [26,27] will appear
elsewhere [36]). Exploring with Janus nonequilibrium dy-
namics up to the seconds scale will allow the investigation
of many intriguing experiments.
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