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We present a theory of quantum-coherent transport through a lateral p-n-p structure in graphene, which

fully accounts for the interference of forward and backward scattering on the p-n interfaces. The

backreflection amplitude changes sign at zero incidence angle because of the Klein phenomenon, adding

a phase � to the interference fringes. The contributions of the two p-n interfaces to the phase of the

interference cancel with each other at zero magnetic field, but become imbalanced at a finite field. The

resulting half-period shift in the Fabry-Pérot fringe pattern, induced by a relatively weak magnetic field,

can provide a clear signature of Klein scattering in graphene. This effect is shown to be robust in the

presence of spatially inhomogeneous potential of moderate strength.
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The electron system in graphene features surprising
connections with the relativistic quantum mechanics of a
massless Dirac particle in external electric and magnetic
fields [1–5]. In particular, charge flow in lateral p-n junc-
tions in graphene is described by Klein scattering [3,4,6],
exhibiting perfect transmission through the barrier at nor-
mal incidence, regardless of the barrier characteristics, and
a barrier-dependent, finite reflection coefficient at non-
normal incidence [7]. On the experimental side, while
transport properties of the first p-n junctions fabricated
in graphene were dominated by disorder [8–10], two recent
papers [11,12] report on observations of a contribution to
the conductance consistent with expectations for ballistic
transmission through p-n interfaces. To extract this ‘‘in-
trinsic’’ contribution, which is relatively small in magni-
tude, one must account for the screening of the gate
potential [13] and the effects of disorder [14].

What other features, besides collimated transmission,
may serve as an experimental signature of Klein scatter-
ing? Here we focus on the characteristic behavior of the
reflection amplitude, which exhibits a jump in phase by �
when the incidence angle � is varied from positive to
negative values (see Fig. 1). The sign change occurs at
normal incidence because the reflection amplitude van-
ishes at � ¼ 0. Below we show that this phase shift, which
is fundamental to Klein scattering, could serve as a hall-
mark of Klein physics in graphene.

The backreflection phase can be detected from interfer-
ence of electron waves scattered on two parallel p-n
boundaries in a p-n-p structure. Transmission in this sys-
tem, described by the Fabry-Pérot (FP) model, exhibits
periodic dependence on the phase�� gained by an electron
bouncing between the p-n interfaces (see Fig. 1),

�� ¼ 2�WKB þ ��1 þ ��2; (1)

where �WKB ¼ 1
@

R
2
1 pxðx0Þdx0 is the WKB phase and

��1ð2Þ are the backreflection phases for the interfaces 1

and 2, exhibiting a �-jump at zero incidence angle �.

As illustrated in Fig. 1, the contribution ��1 þ��2 to
the net phase can be altered by a magnetic field. At zero B
the incidence angles at interfaces 1 and 2 have opposite
signs, and thus the jumps in ��1ð2Þ cancel. However, for
curved electron trajectories at a finite B, the signs of the
incidence angles can be made equal. Indeed, because of
translational invariance along the p-n interface, in the
presence of a magnetic field the y component of electron
kinetic momentum varies in space as ~pyðxÞ ¼ py � eBx,

where py is the conserved canonical momentum compo-

nent that labels different trajectories. For the incidence
angles at interfaces 1 and 2 to be of equal sign, ~pyðx1Þ
and ~pyðx2Þ must have opposite signs, which happens when

� eBL=2< py < eBL=2: (2)

In this case the net backreflection phase ��1 þ��2 in (1)
equals �. As we shall see, the backreflection phase mani-
fests itself as half a period shift of the FP fringe contrast.
This phase shift develops for the field strength such that the
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FIG. 1 (color online). Schematic of electron transmission
through a p-n-p structure at zero (a) and finite (b) magnetic
field B. The amplitude of backreflection changes sign at the
incidence angle � ¼ 0. At finite B, the angles of incidence on
both p-n interfaces are of the same sign for the trajectories
satisfying condition (2). This adds a phase of � to the electron
phase accumulated between reflections, resulting in a half-period
shift of Fabry-Pérot interference fringes. (c) Weak spatial in-
homogeneity does not alter the relative sign of incidence angles.
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range (2) exceeds the Klein collimation range in which the
p-n interface is transparent.

One useful feature of the jump in backreflection phase is
that it is less momentum-selective than collimated trans-
mission. A potential difficulty, however, is that the inter-
ference of scattering on two p-n interfaces can be sensitive
to disorder. Below we will investigate the dependence of
the FP contrast on magnetic field in the presence of large-
scale spatial fluctuations. We find that, while the FP fringe
contrast is suppressed, the 1=2-period shift, controlled by
backreflection, remains surprisingly robust. Even at a rela-
tively high disorder strength, when the FP contrast is
strongly reduced and the fringes become aperiodic, the
1=2-period shift induced by the magnetic field remains
clearly discernable.

Here we shall model the gate potential by a parabola
UðxÞ ¼ ax2 � ", which at " > 0 creates p-n interfaces at

x ¼ �x"; x" �
ffiffiffiffiffiffiffiffiffi
"=a

p
: (3)

The potential depth is controlled by a top gate, " ¼ �Vtg

(in Ref. [11], � � 1
300 ). The curvature parameter a is

determined by the width of the top gate Ltg and its height

h above the graphene plane. The actual potential profile
may be nonparabolic (see Ref. [11] for modeling of screen-
ing effects), however this difference should not matter for
FP interference, occurring when the separation between
p-n interfaces L ¼ 2x" spans only few de Broglie wave-
lengths. This is the case near the threshold in Vtg at which

the p-n-p structure forms, where L is small compared to h
and Ltg. The parabolic UðxÞ may also provide a reasonable

approximation for the devices described in Ref. [12], es-
pecially those with narrow top gates.

The Hamiltonian for a two-component Dirac wave func-
tion, in the presence of the potential UðxÞ, is

H ¼ vF�3px þ vF�2ðpy � eBxÞ þUðxÞ (4)

where �2;3 are Pauli matrices, vF � 1:1� 106m=s is the
Fermi velocity in graphene, and B is the magnetic field.
Hereafter we set @ ¼ vF ¼ 1, with the units for energy,
length and magnetic field as follows:

"� ¼ ðav2
F@

2Þ1=3 � 14 meV; x� ¼ @vF="� � 53 nm;

B� ¼ �0=2�x
2� � 0:24 T; ð�0 ¼ h=eÞ; (5)

where we used the curvature a of 5 eV=�m2, obtained
from the model potential of Ref. [11] fitted to a parabola.

Because of the weak a1=3 dependence, the estimates (5)
should also apply, at least roughly, to other systems.

To find the transmission and reflection coefficients, we
factorize the wave function as c ðx; yÞ ¼ eipyyc ðxÞ, and
solve the one-dimensional Schrödinger equation

i@xc ¼ ðUðxÞ�3 � iðpy � eBxÞ�1Þc ; (6)

where without loss of generality we set the Fermi energy
equal to zero. Transmission, evaluated from the numerical
solution of Eq. (6), exhibits resonances as a function of

momentum and potential depth, shown in Fig. 2. We note a
drastic difference between the results at zero B, similar to
those of Refs. [15,16], and the results at finite B.
To understand the behavior of transmission, it is instruc-

tive to view the differential equation (6) as a fictitious time-
dependent Schrödinger evolution of a two-level system, the
coordinate x playing the role of time. In this analogy, the
system is driven through an avoided level crossing with
splitting �2iðpy � eBxÞ at the crossing times determined

by degeneracy of the diabatic states, UðxÞ ¼ ax2 � " ¼ 0.
This condition yields x ¼ �x", Eq. (3). A Landau-Zener
transition at the first level crossing creates a coherent
superposition of the diabatic states that can interfere at
the second crossing. This so-called Stückelberg interfer-
ence (see [17] and references therein), which can be con-
structive or destructive, is described by an oscillatory
function of the phase �� ¼ �2

R
x"�x"

UðxÞdx ¼ 4
3 "x"

gained between the crossings. The locations of interference
fringes, determined from the conditions �� ¼ 2�n with

n ¼ 1; 2 . . . , are "n ¼ ð3�n=2Þ2=3"�, which agrees with
the positions of the fringes seen in Fig. 2.
For B ¼ 0, the suppression of oscillations near zero py

can be linked to the absence of Landau-Zener transitions at
vanishing level splitting. In the scattering picture, this is
nothing else than the Klein phenomenon of perfect trans-
mission at normal incidence. At finite B, the oscillations

FIG. 2 (color online). Transmission of the p-n-p structure
(a) at zero magnetic field and (b) at a finite field of B ¼
0:2�0=x

2�. Electron momentum py is measured in units of p� ¼
vF="�. Note that at finite B the fringe contrast is reversed across
the parabola (7) (black line), with the maxima and minima of the
fringe pattern interchanging. This behavior is in agreement with
the Fabry-Pérot model (9), with the reflection amplitude vanish-
ing on the parabola, and changing its sign.
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disappear when one of the level splittings py � eBx" van-

ishes, suppressing one of the Landau-Zener transitions. In
terms of electron motion, this condition is equivalent to the
requirement of normal incidence on either of the interfaces
(3), giving

py ¼ �eB
ffiffiffiffiffiffiffiffiffi
"=a

p
; (7)

which is the black parabola drawn in Fig. 2(b). Indeed,
fringes disappear on this line; upon crossing the line, the
maxima and minima of fringes interchange, indicating a �
phase shift in the phase of fringe contrast.

A more refined description can be obtained from a
quasiclassical solution [15] with position-dependent mo-

mentum pxðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2ðxÞ � ~p2

yðxÞ
q

. The turning points, de-

fined by px ¼ 0, are arranged as x10 < x1 < x2 < x20 , with
x2 and x20 equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"þ b2 � py

q
þ b;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"þ b2 þ py

q
� b; (8)

where b ¼ 1
2 eB and x1ð10ÞðpyÞ ¼ �x2ð20Þð�pyÞ. Hereafter

we set a ¼ 1, restoring physical units later. Remarkably,
the conditions x1 ¼ x10 and x2 ¼ x20 , which correspond to
one of the p-n interfaces becoming transparent because of
the Klein phenomenon, yield a relation between py and "

which is identical to Eq. (7) found above.
The classically forbidden regions x10 < x< x1 and x2 <

x < x20 , where px is imaginary, correspond to the Klein
barriers at the interfaces 1 and 2. Denoting the correspond-
ing transmission coefficients as t1 and t2, we can write the
net transmission of the entire p-n-p structure in a general
Fabry-Pérot form

TðpyÞ ¼ t1t2
j1� ffiffiffiffiffiffiffiffiffi

r1r2
p

ei��j2 ; (9)

where r1ð2Þ ¼ 1� t1ð2Þ are the reflection coefficients, and

the phase �� is a sum of the WKB part and the phases of
the reflection amplitudes, Eq. (1).

The transmission amplitudes t1ð2Þ can be evaluated in the
WKB tunneling approximation:

t1¼e
�2Im

R
x
10
x1

pxðx0Þdx0 �e��ðpy�eBx"Þ2 ; �¼ �

2ax"
; (10)

with the integral computed by linearizing UðxÞ near x ¼
x". Similarly, linearizing UðxÞ near x ¼ �x", we find t2 ¼
e��ðpyþeBx"Þ2 . Thus, the reflection amplitudes are

sgn ðpy � eBx"Þei�regðpyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e��ðpy�eBx"Þ2

p
; (11)

where we factored the sign, responsible for the phase jump,
and a regular part of the phase ei�reg , as follows from
analyticity in py. Because the WKB treatment is exact

for linear potentials [18], and the transmission (10) is

exponentially small unless jpy � eBx"j & ��1=2, the lin-

earization ofUðxÞ used to evaluate the integral in (10) gives
accurate results for the energies of interest, " * "�.

The dispersion of the resonances in Fig. 2 can be under-
stood from the momentum dependence of the quasiclass-
ical WKB phase (for simplicity, we set B ¼ 0):

�WKB ¼
Z x2

x1

pxðx0Þdx0 � 4

3
"3=2 � p2

y

2"1=2
log

"

jpyj ; (12)

where an expansion in the parameter jpy="j � 1 is legiti-

mate because Klein collimation restricts transmission to

�py � ��1=2. The quantization condition �12 ¼ �ðnþ 1
2Þ

gives the resonance energies "nðpyÞ dispersing as in Fig. 2.
To summarize, the FP model (9) is in full agreement

with our numerical results. In particular, it explains the
striking difference between the behavior at zero and finite
B, as well as the phase shift of the fringe pattern, resulting
from a sign change of the reflection amplitudes, Eq. (11).
These results can now be applied to analyze conductance

and resistance, given by

R ¼ G�1; G ¼ 4e2

h
W

Z 1

�1
TðpyÞ

dpy

2�
; (13)

whereW is the width of the p-n-p structure (see Fig. 1). As
illustrated in Fig. 3, the resistance exhibits fringes which

obey the n2=3 scaling, as expected from the phase depen-
dence on ", Eq. (12). Somewhat surprisingly, the integral
over py in (13) yields a fairly high fringe contrast in R. This

results from the fact that Klein collimation effectively
restricts the integral to the range of py where the reso-

nances, Eq. (12), are nondispersing.
In the presence of the magnetic field, alongside with the

overall increase in resistance, we observe that the fringes
shift up in " by approximately half a period (see Fig. 4).
This shift, which is a direct consequence of the �-shift of
the reflection phase discussed above, fully develops in the
fields B� 0:4B�. For the parameter values used above,
Eq. (5), we find a value of about 0.1 T, which is well below
the fields characteristic for magnetoresistance [11,12].
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FIG. 3 (color online). Fringes in resistance (13) at B ¼ 0,
plotted in the units of R� ¼ ðx�=WÞh=4e2 (blue line). Inset
illustrates a n2=3 scaling for the maxima and minima of R, which
is consistent with the "3=2 dependence of the WKB phase (12).
Averaging over smooth potential fluctuations, described by a
sum of a few harmonics, suppresses fringe contrast (red dashed
line). Here we use Eq. (14) with

P
mjamj ¼ 3"�.
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The effect of large-scale potential fluctuations, either
intrinsic [19] or induced by variable distance to gates,
can be analyzed by averaging the conductance in (13)
over random offsets in potential depth ":

hGi ¼
I

G

�
"�X

m

am cosðm�þ�mÞ
�
d�

2�
: (14)

This simple model describes a smooth inhomogeneity with
correlation length larger than the p-n interface separation
L, but much shorter than the structure width W. The
averaging procedure (14), applied to our numerical results,
makes the fringes aperiodic and suppresses the contrast
(see red dashed line in Fig. 3). However, the � phase shift
induced by magnetic field remains clearly discernible even
for relatively strong fluctuations [20].

At even stronger randomness, the FP transmission (9)
can be replaced by its phase-averaged value

hTi� ¼ t1t2
1� r1r2

¼ 1

e�ðpyþeBx"Þ2 þ e�ðpy�eBx"Þ2 � 1
: (15)

Plugged in (13), it yields magnetoresistance with charac-
teristic B� B�, identical to that discussed in [4]. The
resulting exponential suppression of conductance of course
would hold only in the absence of short-range disorder.

Conspicuously, the resistance data [11,12] feature aperi-
odic oscillations in gate voltage, observed above the point
where the sign of carriers beneath the top gate is reversed.
This is the same region where strong FP fringes are ex-
pected for an ideal system. The energy scale of the oscil-
lations reported in Ref. [11], converted from gate voltage
using 	"=	Vtg � 1

300 , is about 	"� 30 mV, which is only

a few times larger than the period of 0:8"� � 11 mV found
above (Figs. 3 and 4). Could these oscillations, or those
seen in [12], be the FP fringes contaminated by disorder?
Comparison to the behavior of the FP contrast in the
presence of magnetic field, in particular, to the � phase
shift (Fig. 4), may help to clarify this.

In summary, Fabry-Pérot interference in the Klein scat-
tering regime is found to be sensitive to the phase of the

reflection amplitude that exhibits a jump by � near zero
incidence angle. This leads to half a period shift of inter-
ference fringes in the presence of a relatively weak mag-
netic field, a new effect that can help to identify the Klein
phenomenon in graphene.
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Note added.—Recently, we became aware of the work

[21] which reports unambiguous FP oscillations in a p-n-p
structure. At low fields B & 1 T the behavior of the ob-
served fringes is consistent with our predictions, however
at higher fields the fringes are found to continuously trans-
form into Shubnikov-deHaas oscillations instead of being
suppressed. This indicates coexistence of momentum con-
serving and impurity assisted contributions to transport,
which are dominant at low and high B, respectively. The FP
and SdH oscillations can be understood on equal footing
from quantization of periodic orbits of an electron bounc-
ing between p-n boundaries (to be published).
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FIG. 4 (color online). Resistance (13) of the p-n-p structure as
a function of magnetic field and potential depth. The quantity
plotted is logR=R�, with R� ¼ ðx�=WÞh=4e2. The resistance
minima at high B, marked by dashed lines, are shifted by
approximately half a period relative to those at zero B. In the
close-up of a few fringes (inset), arrows indicate the field-
induced shift.
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