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We calculate the screening function in bilayer graphene (BLG) in both the intrinsic (undoped) and the

extrinsic (doped) regimes within the random phase approximation, comparing our results with the

corresponding single layer graphene and the regular two-dimensional electron gas. We find that the

Kohn anomaly is strongly enhanced in BLG. We also discuss the Friedel oscillation and the RKKY

interaction, which are associated with the nonanalytic behavior of the screening function at q ¼ 2kF. We

find that the Kohn anomaly, the Friedel oscillation, and the RKKY interaction are all qualitatively different

in the BLG compared with the single layer graphene and the two-dimensional electron gas.
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Single layer graphene (SLG), a single layer of carbon
atoms arranged in a honeycomb lattice, has attracted a
great deal of attention, both experimentally and theoreti-
cally, for its unusual electronic transport and the character-
istics of relativistic charge carriers behaving like massless
chiral Dirac fermions [1]. Bilayer graphene (BLG) con-
sisting of two SLG is also of great current interest, for both
technological applications and fundamental interest [1–3].
While the band structure of SLG has a linear dispersion,
BLG has a quadratic dispersion [2] in the low energy
regime making it similar to two-dimensional (2D) semi-
conductor systems except for the absence of a gap. The
purpose of this work is to calculate the polarizability (or
screening) function of bilayer graphene within the random
phase approximation (RPA). Even though many theoretical
works on Coulomb screening in graphene have been re-
ported [4–7], the analytic investigation of Coulomb screen-
ing in BLG has not yet been performed. Recently, the
screening of BLG was considered numerically in
Ref. [8], but such a numerical calculation is less useful in
any general context. Knowing the BLG screening function
is crucial since it determines many fundamental properties:
e.g., transport through screened Coulomb scattering by
charged impurities [9], Kohn anomaly in phonon disper-
sion [10], and RKKY interaction [11]. In order to under-
stand the electronic properties of BLG, it is therefore
necessary to obtain its screening function.

The BLG is in some sense intermediate between the
SLG and the regular semiconductor-based two-
dimensional electron gas (2DEG) since it is chiral with a
zero band gap at the Dirac point (where the electron and the
hole bands touch) similar to the SLG but has the quadratic
energy dispersion similar to the 2DEG. For example, the
2kF backscattering is suppressed [4–7] in SLG due to its
chiral nature, whereas in the 2DEG, the 2kF backscattering
plays a key role [12] in determining low density and low
temperature carrier transport. We find that the 2kF back-
scattering is restored (and even enhanced) in the BLG
because of the quadratic dispersion and, more importantly,
due to the symmetry imposed by the two-layer structure.

This qualitative difference in the screening properties be-
tween BLG and SLG leads us to predict that transport and
other electronic properties in BLG will be qualitatively
more similar to 2DEG than to SLG in spite of the zero-
gap chiral nature of BLG.
The effective BLG Hamiltonian is now well established

in the theoretical literature. In the low energy regime, the
Hamiltonian is reduced to the ð2� 2Þ matrix form and is
given by (we use @ ¼ 1 throughout this Letter) [2]

H0 ¼ � 1

2m

0 ðkx � ikyÞ2
ðkx þ ikyÞ2 0

 !
; (1)

where m ¼ �1=ð2v2
FÞ, �1 is the interlayer tunneling am-

plitude, and vF is the SLG Fermi velocity. The wave

function of Eq. (1) can be written as c sk ¼
eikrðe�2i�k ; sÞ= ffiffiffi

2
p

, and the corresponding energy is given
by �sk ¼ sk2=2m, where �k ¼ tan�1ðky=kxÞ and s ¼ �1

denote the band index. Using the Hamiltonian of Eq. (1),
we theoretically obtain the screening function of BLG by
calculating the polarizability and the dielectric function
within the RPA.
The static dielectric function can be written as

�ðqÞ ¼ 1� 2�e2

�q
�ðqÞ; (2)

where � is the background dielectric constant and�ðqÞ the
polarizability. The static BLG polarizability is given by the
bare bubble diagram

�ðqÞ ¼ g

L2

X
kss0

fsk � fs0k0

"sk � "s0k0
Fss0 ðk;k0Þ; (3)

where g is the degeneracy factor (here g ¼ 4 due to valley
and spin degeneracies), k0 ¼ kþ q, s; s0 ¼ �1 denote
the band indices, "sk ¼ sk2=2m, and Fss0 ðk;k0Þ ¼
ð1þ ss0 cos2�Þ=2, where � is the angle between k and
k0, and fsk is the Fermi distribution function fsk ¼
½expf�ð"sk ��Þg þ 1��1, with � ¼ 1=kBT and � the
chemical potential.
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First, we consider intrinsic (i.e., undoped or ungated,
with n and EF both being zero) BLG where the conduction
band is empty and the valence band fully occupied at T ¼
0. Then we have fþk ¼ 0 and f�k ¼ 1. Since the conduc-
tion band is empty, the polarization is induced by the
virtual interband transition of electrons from the valence
to the conduction band. The polarizability due to the inter-
band transition becomes �ðqÞ � �0ðqÞ, where

�0ðqÞ ¼ g

2

Z d2k

ð2�Þ2
�
1� cos2�

"þk � "�k0
� 1� cos2�

"�k � "þk0

�
; (4)

where cos� ¼ ðjkj þ jqj cos�Þ=jkþ qj. Equation (4) can
be calculated easily as

�0ðqÞ ¼ N0 log4; (5)

where N0 ¼ gm=2� is the BLG density of states. Thus the
intrinsic BLG polarizability is constant for all wave vec-
tors. (Note that the polarizability of ordinary 2DEG is
constant [11] only for q � 2kF.) The dielectric function
becomes �ðqÞ ¼ 1þ qs=q, where the screening wave vec-
tor is given by

qs ¼ qTF log4; (6)

where qTF is the 2D Thomas-Fermi screening wave vector
[11]: qTF ¼ gme2=�. BLG static screening is thus en-
hanced by a factor of log4 compared with ordinary 2D
screening [11]. For intrinsic BLG we can write the
screened Coulomb potential as

�ðrÞ ¼ e

�r
� e

�

�qs
2

½H0ðqsrÞ � N0ðqsrÞ�; (7)

where H0ðxÞ and N0ðxÞ are the Struve function and the
Bessel function of the second kind, respectively. The
asymptotic form at large r is �ðrÞ � eqs=�ðqsrÞ3. Since
the screening function is a constant for all q without any
singular behavior, there is no oscillatory term in the po-
tential. This is very different from the screening behavior
of intrinsic SLG [4–6] or 2DEG [11].

For intrinsic SLG we have

�0ðqÞ ¼ NSLG
0

�

8
; (8)

where NSLG
0 ¼ gq=ð2�vFÞ. The intrinsic SLG polarizabil-

ity increases linearly with q, and �ðqÞ ¼ 1þ ðe2g=�vFÞ�
ð�=8Þ, which gives rise to only an enhancement of the
effective background dielectric constant �� ¼ �þ
ðe2g=vFÞð�=8Þ, i.e., the screened Coulomb interaction
VðqÞ ¼ 2�e2=��q. The Coulomb interaction in real space
can be expressed by VðrÞ ¼ e2=��r for all r. Thus at large
r the Coulomb potential decreases as 1=r3 in intrinsic BLG
but only as 1=r in intrinsic SLG.

In the following we provide the zero temperature static
polarizability of extrinsic (i.e., gated or doped) BLG where
n; EF � 0. At T ¼ 0, f�k ¼ 1 and fþk ¼ �ðkF � jkjÞ.
Then we can rewrite Eq. (1) as �ðqÞ ¼ �intraðqÞ þ
�interðqÞ, where

�intraðqÞ ¼ � g

L2

X
ks

�
fsk � fsk0

"sk � "sk0

�
1þ cos2�

2
(9)

and

�interðqÞ ¼ � g

L2

X
ks

�
fsk � f�sk0

"sk � "�sk0

�
1� cos2�

2
: (10)

�intra (�inter) indicates the polarization due to intraband
(interband) transition. After angular integration over the
direction of q, we have

�intraðqÞ ¼ gm

2�

Z kF

0

dk

k3

�
k2 � jk2 � q2j

þ ð2k2 � q2Þ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4k2

p �ðq� 2kÞ
�
; (11)

�interðqÞ ¼ gm

2�

Z 1

kF

dk

k3
½�k2 � jk2 � q2j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k4 þ q4

q
�:

(12)

Then

�intraðqÞ
N0

¼

8>>>><
>>>>:
1� q2

2k2F
if q � kF;

q2

2k2F
� 2 log q

kF
if kF < q < 2kF;

q2

2k2F
� 2 log q

kF
� fðqÞ if q > 2kF;

(13)

�interðqÞ
N0

¼
8<
:�1þ q2

2k2F
þ gðqÞ if q � kF;

� q2

2k2F
þ 2 logqþ gðqÞ if q > kF;

(14)

with

fðqÞ ¼ 2k2F þ q2

2k2Fq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4k2F

q
þ log

q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4k2F

q
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4k2F

q ;

gðqÞ ¼ 1

2k2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k4F þ q4

q
� log

�k2F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4F þ q4=4

q
2k2F

�
:

(15)

Finally, we have the extrinsic BLG static polarizability as

�ðqÞ ¼ N0½gðqÞ � fðqÞ�ðq� 2kFÞ�: (16)

Equation (16) with Eq. (15) is the basic result obtained in
this Letter, giving the doped BLG polarizability
analytically.
In Fig. 1, we show the calculated static polarizability

as a function of the wave vector. Figures 1(a) and 1(b)
show the calculated intraband and interband polarizabil-
ities, respectively, with those of single layer graphene for
comparison. Figure 1(c) shows total polarizability of bi-
layer graphene. At q ¼ 0, we have �intrað0Þ ¼ N0 and
�interð0Þ ¼ 0, which follow also from the compressibility
sum rule �ðq ¼ 0Þ ¼ R

d"½�dfð�Þ=d"�Nð"qÞ. For small
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q, �intraðqÞ decreases as 1� q2=2k2F, and �interðqÞ in-

creases as q2=2k2F. This behavior comes from the overlap

factor Fss0 in Eq. (3). For SLG, intraband (interband)
polarizability decreases (increases) linearly as q increases,
and these two effects exactly cancel out up to q ¼ 2kF,
which gives rise to the total static polarizability being
constant for q < 2kF as in the 2DEG. However, for BLG,
the cancellation of two polarizability functions is not exact
especially for q > kF because of the enhanced backscat-
tering, so the total polarizability increases as q approaches
2kF, which means screening increases as q increases. Thus
BLG, in spite of being a 2D system, does not have a
constant Thomas-Fermi screening up to q ¼ 2kF as exists
in SLG and 2DEG.

A qualitative difference between SLG and BLG polar-
izability functions is at q ¼ 2kF. Because of the suppres-
sion of 2kF backward scattering in SLG, the total
polarizability as well as its first derivative are continuous.
In BLG, however, the large angle scattering is enhanced
due to chirality [i.e., the overlap factor Fss0 in Eq. (3)],
which gives rise to the singular behavior of polarizability at
q ¼ 2kF. Even though the BLG polarizability is continu-
ous at q ¼ 2kF, it has a sharp cusp and its derivative is
discontinuous at 2kF, diverging as q approaches 2kF; i.e.,

as q ! 2kF, d�ðqÞ=dq / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4k2F

q
. This behavior is

exactly the same as that of the regular 2DEG, which also
has a cusp at q ¼ 2kF in addition to being constant in the
0 � q � 2kF region. Note that in SLG this nonanalytic
behavior of polarizability occurs in the second derivative:

d2�ðqÞ=dq2 / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4k2F

q
.

In the large momentum transfer regime q > 2kF, the
BLG polarizability approaches a constant value (intrinsic
polarizability �0), i.e., �ðqÞ ! N0 log4, because the in-
terband transition dominates over the intraband contribu-
tion in the large wave vector limit. This is very different
from that of a 2DEG, where the static polarizability falls
off rapidly (� 1=q2) for q > 2kF [11], and SLG, where the
polarizability increases linearly as q. Thus, the large q
behavior of dielectric screening becomes �ðq ! 1Þ !
1þ g�e2=ð8�vFÞ for SLG and �ðq ! 1Þ ! 1 for both
BLG and 2DEG.
The strong cusp in BLG �ðqÞ at q ¼ 2kF leads to

Friedel oscillations in contrast to the SLG behavior. The
leading oscillation term in the screened potential at large
distances from a point charge Ze can be calculated as

�ðrÞ � � e

�

4qTFk
2
F

ð2kF þ CqTFÞ2
sinð2kFrÞ
ð2kFrÞ2

; (17)

where C ¼ ffiffiffi
5

p � log½ð1þ ffiffiffi
5

p Þ=2�, which is similar to the
2DEG except for the additional constant C (C ¼ 1 for
2DEG) but different from SLG where Friedel oscillations
scale as �ðrÞ � cosð2kFrÞ=r3 [13]. The enhanced singular
behavior of the BLG screening function at q ¼ 2kF has
other interesting consequences related to Kohn anomaly
[10] and RKKY interaction, which we discuss below.
The strong cusp in the BLG polarizability at q ¼ 2kF, as

can be clearly seen in Fig. 1(c), indicates that the screened
BLG acoustic phonon frequency would manifest a strong
Kohn anomaly, i.e., an observable dip structure in the pho-
non frequency at q ¼ 2kF. It is obvious from Fig. 1(c), and
from the discussion above based on our analytical results
for �ðqÞ, that the screened phonon dispersion will exhibit a
much stronger Kohn anomaly in the BLG than in the SLG
with the 2DEG being intermediate. This arises from the
stronger singularity at q ¼ 2kF manifesting in the first
derivative d�ðqÞ=dq in the BLG rather than in the second
derivative d2�=dq2 in the SLG. Tuning the value of kF by
changing the carrier density through the applied gate volt-
age, it should be possible to verify that the Kohn anomaly
is indeed associated with the 2kF screening behavior in the
BLG. In fact, the BLG Kohn anomaly would be, due to the
very strong q ¼ 2kF cusp in the polarizability, rather simi-
lar to the 1D Peierls instability [14] since the q ¼ 2kF
screening behavior in BLG is qualitatively similar to the
1D electron system [15].
The polarizability function in Eq. (16) also determines

the RKKY interaction between two magnetic impurities
due to the induced spin density (here we consider magnetic
impurities located at the interface between BLG and sub-
strate, so they do not break any symmetry). The RKKY
interaction (or induced spin density) is proportional to
the Fourier transform of �ðqÞ. The conventional form of
the exchange interaction between the localized moment S
and electron-spin density sðrÞ is given by VðrÞ ¼
JSðRÞsðrÞ	ðR� rÞ, where J is the exchange coupling
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FIG. 1 (color online). Calculated (a) intraband, (b) interband,
and (c) total static polarizability of bilayer graphene. For com-
parison, the single layer polarizabilities are shown. In (c), we
also show the regular 2D static polarizability (dashed line).
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constant. The RKKY interaction between two localized
moments via the conduction electrons may then be written
in the following form: HRKKYðrÞ ¼ J2S1S2�ðrÞ, where
�ðrÞ is the Fourier transform of the static polarizability
�ðqÞ.

First, consider intrinsic BLG. The Fourier transform of
Eq. (5) simply becomes a 	 function because �0ðqÞ is a
constant, i.e.,�ðrÞ ¼ N0 logð4Þ	ðrÞ. This indicates that the
localized magnetic moments are not correlated by the long
range interaction and there is no net magnetic moment. In
SLG, the Fourier transform of polarizability [Eq. (8)] di-
verges [even though �ðrÞ formally scales as 1=r3, its
magnitude does not converge], which means that intrinsic
SLG is susceptible to ferromagnetic ordering in the pres-
ence of magnetic impurities [16,17] due to the divergent
RKKY coupling.

In doped (or gated) BLG, the oscillatory term in RKKY
interaction is restored due to the singularity of polarizabil-
ity at q ¼ 2kF, and the oscillating behavior dominates at
large kFr. At large distances 2kFr 	 1, the dominant
oscillating term in �ðrÞ is given by

�ðrÞ � N0

k2F
2�

sinð2kFrÞ
ðkFrÞ2

: (18)

This is the same RKKY interaction as in a regular 2DEG,
and it decreases as 1=r2, in contrast with 1=r3 behavior in
SLG [6].

In conclusion, we calculate analytically the static wave
vector dependent polarizability of both undoped and doped
bilayer graphene within the RPA. For undoped BLG, we
find that screening is enhanced by a factor of log4 com-
pared with ordinary 2D screening. The RKKY interaction
in undoped BLG is zero-ranged (	 function). The doped
BLG screening function shows strongly enhanced Kohn
anomaly at 2kF compared with the corresponding SLG and
2DEG situations, which give rise to the usual RKKY
interaction and Friedel oscillation. We show that BLG
screening properties are qualitatively different from SLG
screening behavior in all wave vector regimes (q < 2kF,
q > 2kF, and q ¼ 2kF) with the BLG screening having a
strong cusp at q ¼ 2kF. Our theory applies only in the
density regime (1010 < n< 5� 1012 cm�2), where the
band dispersion is quadratic and only the lowest subband
is occupied [2], but the RPA should be well valid due to the
interaction parameter rs being generally small in graphene
[3]. There are obvious implications of our results for BLG
carrier transport limited by screened Coulomb scattering—
in particular, the strong 2kF anomaly in screening will lead

to strong temperature dependence in dc transport at low
(T 
 TF) temperatures. This is in sharp contrast to SLG
where 2kF backscattering is suppressed.
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