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A growing or shrinking disc will adopt a conical shape, its intrinsic geometry characterized by a surplus

angle ’e at the apex. If growth is slow, the cone will find its equilibrium. Whereas this is trivial if ’e � 0,

the disc can fold into one of a discrete infinite number of states if ’e > 0. We construct these states in the

regime where bending dominates and determine their energies and how stress is distributed in them. For

each state a critical value of ’e is identified beyond which the cone touches itself. Before this occurs, all

states are stable; the ground state has twofold symmetry.
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Soft matter systems may display enormous complexity
at the microscopic level [1,2]. However, on mesoscopic or
larger scales of physical interest, the relevant degrees of
freedom very often turn out to be purely geometrical. If one
dimension is much smaller than the two others, an effective
description in terms of a two-dimensional surface becomes
appropriate. This is just as true for biological membranes
[3,4] as it is for inanimate matter [5].

The equilibrium shape of the surface is often a minimum
of bending energy. Typically however, one must take into
account external forces, or constraints on the geometry:
these may be global as in the fluid membranes occurring in
cells in which the area or the enclosed volume is fixed; they
may also be local as in plant tissues which are described, to
a good approximation, as an unstretchable surface with a
fixed metric [6,7].

In general, bending is not possible without stretching. It
turns out, however, that the most effective way to minimize
the energy and satisfy the constraint is by confining the
regions where stretching occurs to a series of sharp peaks
and ridges [8,9]. On length scales much larger than the
thickness of the sheet, these can then be treated as points
and curves along which boundary conditions are set on the
surface. The simplest geometry of this kind is the devel-
opable cone—the ‘‘point defect’’ of folding, with the bend-
ing energy localized near the apex. Such a geometry is
illustrated beautifully by a flat planar disc of paper de-
pressed into a circular frame by applying a point force to its
center [10].

Conical shapes also occur in living tissues. The unicel-
lular algae Acetabularia acetabulum, for example, grows a
conical cap in the course of its development [7,11]. Despite
the superficial similarity, however, the pointlike singularity
exhibited in such cones is very different from the one
which appears in the developable cone. In the latter, the
singularity at the apex is extrinsic; the metric itself remains
the same as that of the original disc. This is captured by the

fact that the surplus angle at the apex vanishes: the length
of the closed curve at a unit distance from the apex is equal
to 2�. If, however, there is a surplus or a deficit, there will
be a nontrivial folded state even when external forces do
not act. Whereas this state is an unremarkable circular cone
in the case of a deficit, when the deficit is turned to surplus,
the folded shape—an excess cone (e cone for short)—
exhibits a surprisingly subtle behavior. In this Letter, we
will describe the equilibrium states associated with these
‘‘point defects’’ in the full nonlinear theory. Remarkably,
there exists a discrete infinity of states (they are ‘‘quan-
tized’’); they can therefore be completely classified in
terms of the surplus angle ’e and a quantum number n.
For each n we show that there is a critical value of ’e,
increasing monotonically with n, beyond which the cone
makes contact with itself; if ’e > 35:23 self-contact can-
not be avoided. The resulting shapes are not unlike the
collars—called ruffs—one associates with portraits by
Rembrandt or Hals.
To understand the physics of e cones we identify the

stresses which underpin their geometry. We also address
the question of stability. What is the ground state? Are all
equilibria local minima of the bending energy? To answer
these questions, one must take care not to lose sight of the
local constraint of isometry. It is reassuring that one can
easily build paper models and put the results of this analy-
sis to the test.
Geometry and energy.—The e cone can be parametrized

in terms of a closed curve �: s ! uðsÞ on the unit sphere
where the arclength s runs from 0 to se ¼ 2�þ ’e along
this curve (see Fig. 1). If r denotes the radial distance from
the origin, the surface is described by the vector function
Xðr; sÞ ¼ ruðsÞ. Its direction in Euclidean space R3 will be
given by the polar and azimuthal angles on the sphere, ’
and #, respectively. The tangent vectors to the e cone are u
and t ¼ u0 where the prime denotes a derivative with
respect to s. Together with the normal n ¼ u� t these
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vectors form a right-handed surface basis. In the direction
of u the surface is flat. The curvature along s is given by
� ¼ �n � t0. It is easy to show that � is also the geodesic
curvature of � on the unit sphere. It should, however, not be
mistaken for the Frenet curvature.

Our first task is to identify the configurations that mini-
mize the bending energy of an unstretchable cone of radius
Rwith a surplus angle’e > 0. If we introduce the cutoff r0
at the apex and integrate over the radial direction, the
bending energy is given by B ¼ ða=2ÞH� ds�

2; the dimen-
sional dependence of B is absorbed into the parameter a ¼
lnðR=r0Þ. While it will set the magnitude of the stresses in
the cone, it does not play any direct role in determining the
shape of the e cone. The constraint of unstretchability is
implemented by adding a term to the energy functional
which fixes the metric via a set of local Lagrange multi-
pliers Tab [12]. These can be identified with a conserved
tangential stress.

The shape equation and its solution.—There is a remark-
ably simple way to determine the shape of the surface: first
recall that to every continuous symmetry of a system a
conserved Noether current exists. As the apex of the e cone
is fixed, translational invariance is broken. The bending
energy is, however, rotationally invariant. The correspond-
ing conserved vector J, related to the torque about the
apex, is given by [12]

J =a ¼ ð�2=2� CkÞnþ �0tþ �u: (1)

We will suppose that J can be aligned with the z axis,
J ¼ Jz. Its square directly yields the first integral of the
shape equation of the surface

~J 2 � C2
k ¼ �02 þ �4=4þ ð1� CkÞ�2; (2)

where we define ~J :¼ J=a. The constant Ck is associated

with the fixed arclength; it will determine the stress estab-
lished in the surface. Equation (2) is identical to the
equation describing the behavior of planar Euler elastica
with (scaled) tension ~� :¼ Ck � 1 and � in place of the

Frenet curvature. It is completely integrable in terms of
elliptic functions [13,14]. The intrinsic closure condition
�ðseÞ ¼ �ð0Þ ¼ 0 will provide a ‘‘quantization’’ of the so-

lution: the e cone has to be periodic in equilibrium with a
period of se=n, where n is the number of folds. Solving
Eq. (2) for � we obtain

�ðsÞ ¼ 4
ffiffiffiffiffiffiffi�k

p ½KðkÞ=S� sn½2sKðkÞ=S; k�; (3)

where S ¼ se=2n. The function snðs; kÞ is the sine of the
Jacobi amplitude amðs; kÞ with parameter k. The symbol
KðkÞ denotes the complete elliptic integral of the first kind
[15]. The parameter k is directly related to the stressCk and
the torque ~J.
To obtain the shape, consider the projections of J with

respect to the local trihedron. Projecting onto u

~Jðz � uÞ ¼ ~J cos# ¼ � (4)

yields the polar angle # as a function of s since �ðsÞ is
known. Equation (4) places a strong constraint on the
equilibrium shape. In particular, it implies that the only
equilibrium shape consistent with a deficit angle is a
circular cone. Projecting J onto t reproduces the derivative
of Eq. (4). The remaining projection

~Jðz � nÞ ¼ ~J’0sin2# ¼ �2=2� Ck (5)

allows one to determine the azimuthal angle ’ via a simple
integration.
The closure of the surface in Euclidean space R3 pro-

vides a second (extrinsic) closure condition, i.e., ’ðseÞ ¼
2�. This equation identifies the constant k implicitly as a
function of the surplus angle ’e and the quantum number
n. Its numerical solution can be approximated remarkably
well by a polynomial of third order in ’e. For small ’e, we
find k ¼ a1’e þOð’2

eÞ, where a1 ¼ � 1
2� ð1� 1

n2
Þ.

Surface shapes.—The e cone has to have two or more
folds. This is a consequence of the four-vertex theorem
[16,17]. If the surplus angle is small, one finds a solution
with no self-contact for all natural numbers n � 2. As an
example, the first three n folds for ’e ¼ 2� are plotted in
Figs. 2(b) and 2(d). It is child’s play to construct paper
models; the twofold illustrated consists of two circular
paper discs, each with a radial cut, glued together along
the opposite sides of the cut. The model [see Fig. 2(a)]
closely resembles the calculated shape even though the
surplus angle in question involves deformations of the
flat geometry well outside the linear regime.
As ’e is increased, the conical geometry becomes more

crowded and, at some point, the mathematical surface will
intersect itself. This happens first with the twofold. The
physical surface, of course, will not self-intersect. Where
different regions come into contact, they will experience
forces and they will deform accordingly [18]. To determine
the critical surplus angle ’kiss

e above which this happens,
consider the opening angle � ¼ #ðS=2Þ at the turning

point. It is given by � ¼ arccosð~J�1�maxÞ with �max ¼
4

ffiffiffiffiffiffiffi�k
p

KðkÞ=S. When � ¼ 0 the two sides of the two-
fold touch along the z axis and Eqs. (4) and (5) sim-
plify to ~J ¼ �max and ~J2 ¼ 2Ck. This implies that

FIG. 1 (color online). Geometry of the e cone with ’e ¼ 2�
9 .
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S2 ¼ 4ð1� kÞKðkÞ2. Solving this equation together with
the extrinsic closure condition numerically yields k �
�0:28 and ’kiss

e � 7:08. For e cones with more than two
folds, the situation is more complicated. Adjacent folds
touch pairwise at some nonvanishing opening angle. The

corresponding kissing conditions are now ’0ðsjkissÞ ¼ 0 and

’ðsjkissÞ ¼ ð2j� 1Þ�=2n, where j 2 f1; . . . ; 2ng. In Table I
the values of ’kiss

e of various n folds are given.
Interestingly, ’kiss

e converges to ’kiss
e;max � 35:23 from be-

low if n is sent to infinity. This implies that one cannot find
a stable surface with ’e > ’kiss

e;max which does not make

contact with itself. The detailed analysis of these touching
geometries lies beyond the scope of this Letter. The two-
fold, however, is straightforward to study since it will touch
itself only at two segments of the unit circle of arclength’t

each. Using the kissing conditions with n ¼ 2, ’t and Ck
can be determined simultaneously for any given ’e.

Stresses in the e cone.—Even though there are no exter-
nal forces acting on the cone, stresses will be set up in the
surface due to bending as well as the constraint on the
metric. The stress tensor Tab which fixes the latter is purely
tangential. It is diagonal with respect to the basis (u, t) and
constant along curves of constant radial distance r. Its
nonvanishing components along t and u are given by Tk ¼
�Ck=r2 and, for a large disc, T? ¼ �Tk [12]; it is non-

isotropic.

In Fig. 3 Ck is plotted as a function of ’e for different

values of n. For small values of’e the expansion k � a1’e

can be used to write Ck ¼ ð1� n2Þ � ð4�Þ�1 �
ð3� 7n2Þ’e þOð’2

eÞ. In this regime the stress Ck is nega-
tive; this corresponds to a compressive stress along the
tangential direction; an equal compensating tensile stress
will act radially. Ck is nonvanishing when ’e ¼ 0, repre-
senting the critical compression necessary to buckle the
planar sheet into the corresponding mode. For a fixed
surplus angle the absolute value of Ck increases with n.
If ’e is increased, the curves for different n converge and
appear to intersect in a single point (the twofold is excep-
tional making contact with itself before this point is
reached). Investigated more carefully, however, a set of
adjacent intersection points is found which converge to
’e � 7:47 for n ! 1. Above this region each curve
reaches a maximum which diverges quadratically with n.
If n > 5 and’e sufficiently large, Ck is greater than 1. This
implies that the tension ~� in the corresponding planar
Euler elastica changes sign [cf. text below Eq. (2)].
However, one must remember that the full stress in the e

cone includes a contribution due to bending. This becomes
increasingly important as ’e gets larger. The tangential
projection fk of the full stress tensor can be written as fk ¼
ð~J=r2Þ sin#’, where ’ is the basis vector of ’. The trans-
mitted force per length along � is a maximum at the
equator and a minimum at the turning points. It always
points in the direction of ’; the tangential part of fk
becomes tensile where ’0 is negative. These results can
easily be verified by cutting the paper model along the flat
direction and observing how the sheet reacts.
Bending energy.—We are also able to obtain an analyti-

cal expression for the bending energy ~B :¼ B=ðase=2Þ
using the expression for � in terms of elliptic functions:
~B ¼ 64KðkÞ½EðkÞ �KðkÞ�ðn=seÞ2. We have normalized
the bending energy by dividing by the area of the e cone.

TABLE I. Kissing points for different n folds.

n 2 3 4 5 10 50 ! 1
’kiss

e 7.08 13.30 17.78 21.12 29.38 34.92 35.23
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FIG. 3 (color online). Stress Ck as a function of ’e for n ¼ 2
(solid line), 3 (short-dashed), 4 (dash-dotted), 5 (long dashed),
and 10 (bold solid). The red curve shows Ck for the touching

twofold. Above Ck ¼ 1 the tension ~� along the curve � changes

sign.

FIG. 2 (color online). Paper model (a) and calculated surface
shapes for ’e ¼ 2� with n ¼ 2 (b), n ¼ 3 (c), and n ¼ 4 (d).
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The function EðkÞ is the complete elliptic integral of the
second kind [15].

For fixed ’e, ~B scales essentially with n2 since k de-
pends only weakly on n. In Fig. 4 the energy is plotted as a
function of ’e for the lowest n folds. For small ’e, all
curves behave as ~B � 1

� ðn2 � 1Þ’e. The twofold is the

ground state if ’e is below the critical value associated
with self-intersection. This observation is confirmed nicely
by the paper model [see Fig. 2(a)]. For higher values of ’e

one needs to examine the folding pattern that is consistent
with self-contact. Initially, by continuity, it will remain the
ground state. However, with increased crowding one be-
gins to force up the average curvature: above ’e ¼ 8:27
the threefold possesses lower energy than the touching
symmetrical twofold and the e cone may flip from n ¼ 2
to n ¼ 3. Equivalent behavior is expected if ’e is in-
creased. To analyze the stability of our solutions, it is
necessary to examine the second variation �2H of the total
energy functional. This is complicated by the fact that the
local constraint of isometry has to be imposed on the
deformations about the conical background. What is re-
markable is that the calculation is tractable. One can show
that �2H is of the form

H
ds�L�, where � ¼ n � �X

denotes the normal deformation of the surface. The relic
of the isometry constraint is that

H
�� ¼ 0. The operator

L ¼ @4s þ 1
2@sV1@s þ 1

2 ðV2 þ 1
2V

00
1 Þ is self-adjoint and of

fourth order in @s. The potentials V1 and V2 are functions of
� and its derivatives. Using a decomposition of � into
Fourier modes, one can determine the eigenvalues ofL for
arbitrary ’e and n. They are all positive; e cones free of
self-contacts are stable.

Conclusions.—We have described the equilibrium states
of a cone exhibiting a surplus angle. If we suppose that
growth is slow compared to any viscoelastic time scale, the
surface finds its equilibrium and the approach we have
presented describes the evolution of the shape of a growing
conical tissue. If the circumferential arclength increases

linearly with the geodesic radius, the surplus angle will
remain constant; the cone will scale as it grows. Another
mode of growth involves an increasing surplus angle. An
initially flat disc will develop into a twofold, although a
fluctuation may favor some higher energy state which we
have seen is stable. However, if at some point, the surplus
angle reaches ’kiss

e ð2Þ the surface will make contact which
is costly energetically. At some higher value one would
expect the surface to flip spontaneously into a threefold.
This will continue through a fourfold and so fifth with
increasingly higher speed. Above ’kiss

e;max, however, self-

contact becomes unavoidable. Internal local pressure will
build up as the spherical volume occupied by the cone is
packed more and more densely.
What we have learned about the e cone lays the founda-

tion for understanding more general morphologies. If a
disc surrounding the apex is removed, the cone can relax
into some other flat geometry. Indeed one can easily verify
with a paper model that the n ¼ 2 ground state is unstable
with respect to such deformations. These truncated cones
can also be glued together to model surfaces which are not
flat: a surface of constant negative Gaussian curvature can
be approximated by a telescope formed by such annuli.
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FIG. 4 (color online). Scaled bending energy ~B for n ¼ 2
(solid line), 3 (short-dashed), 4 (dash-dotted), 5 (long dashed),
and 10 (bold solid). The red curve shows ~B for the touching
twofold.
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