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We investigate the influence of space curvature, and of the associated frustration, on the dynamics of a

model glass former: a monatomic liquid on the hyperbolic plane. We find that the system’s fragility, i.e.,

the sensitivity of the relaxation time to temperature changes, increases as one decreases the frustration. As

a result, curving space provides a way to tune fragility and make it as large as wanted. We also show that

the nature of the emerging ‘‘dynamic heterogeneities’’, another distinctive feature of slowly relaxing

systems, is directly connected to the presence of frustration-induced topological defects.
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Among the many anomalous properties associated with
glass formation, ‘‘fragility’’ is one that has attracted much
attention [1–7]. Large fragility, i.e., large deviation of the
temperature dependence of the viscosity and of the struc-
tural relaxation time from an Arrhenius behavior, is usually
taken as the signature of a collective phenomenon that
grows as temperature decreases. This is certainly one in-
centive for the continuing search for a theory of the glass
transition [2,4–7]. Yet, the absence of a simple glass-
forming liquid model in which one can control the degree
of fragility, hence the extent to which collective behavior
develops, has hindered progress on developing and testing
candidate theories.

Since the early work of Frank [8], a promising line of
research on supercooled liquids and the glass transition has
relied on the concept of ‘‘geometric frustration’’[7,9,10].
Frustration in this context can be defined as an incompati-
bility between extension of the local order preferred in a
liquid and tiling of the whole space. The paradigm is the
icosahedral order in metallic liquids and glasses, which
although locally favored cannot tile space due to topologi-
cal reasons [8]. Frustration of the icosahedral order, how-
ever, can be suppressed by leaving the Euclidean world and
curving space [9,10]. In a series of insightful articles [10–
12], Nelson and collaborators have proposed a simpler
two-dimensional (2D) analog: by placing a liquid of disks
on a 2D manifold of constant negative curvature (the
hyperbolic plane), the local hexagonal order that can tile
the ordinary Euclidean plane is now frustrated in a way
which mimics by many aspects the frustration of icosahe-
dral order in 3D Euclidean space. The model of a mona-
tomic liquid on the hyperbolic plane therefore offers the
opportunity to investigate, at a microscopic level, the in-
fluence of the degree of frustration, here controlled by the
curvature, on the slowing down of the relaxation associated
with glass formation.

We present the results of the first computer simulation of
the dynamics of a liquid in curved hyperbolic space. The
hyperbolic plane H2, also called pseudosphere or Bolyai-

Lobatchevski plane, is a Riemannian surface of constant
negative curvature [13,14]. Contrary to a sphere, which is a
surface of constant positive curvature, H2 is infinite: this
allows one to envisage the thermodynamic limit at constant
curvature. However, H2 cannot be embedded as a whole in
the 3D Euclidean space and ‘‘models’’, i.e., projections,
must be used for its visualization. The hyperbolic metric is
often given in polar coordinates (r, �), namely,

ds2 ¼ dr2 þ
�
sinhð�rÞ

�

�
2
d�2; (1)

which makes apparent the connection with the more famil-
iar metric of the sphere S2 that is obtained by replacing the
parameter � by i�. The Gaussian curvature ofH2 is��2 <
0; � therefore measures the deviation from flat space and
��1 can be taken as an intrinsic frustration length. We
consider the Poincaré disk model [Fig. 1(a)] that maps
the whole infinite space H2 onto the open disk of radius
unity. This projection [r0 ¼ tanhð�r=2Þ, �0 ¼ �] is con-
formal; i.e., it preserves the angles, but is not isometric: the
Euclidean distance between two points of the disk sepa-
rated by a given distance in H2 shrinks to zero when the
points approach the disk perimeter.
To carry out a molecular dynamics (MD) simulation of

particles on the hyperbolic plane, a number of serious
methodological problems have to be resolved, which we
only briefly allude to. Once the model is properly defined,
the two main ingredients in any MD simulation are the
algorithm to solve the Newton equations of motion and the
boundary conditions, usually chosen as periodic in order to
more rapidly converge to the thermodynamic limit corre-
sponding to the experimental situation. Among the pecu-
liarities one encounters when leaving flat space to consider
curved manifolds such as H2 is the absence of a global
definition of parallel vectors. We handle this and generalize
the standard MD algorithm to the hyperbolic plane by
using a method detailed in a forthcoming publication.
Even more delicate is the question of the periodic boundary
conditions (PBC’s). Because of the hyperbolic nature of
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the metric, the contribution of the boundary of any finite
system is always of the same order of magnitude as that of
the bulk of the system. Implementing proper PBC’s is
therefore crucial. Again, one must account for the specif-
icities of hyperbolic space: first, an infinite number of
regular tilings of H2 are possible, and second, the area of
the elementary cell of a given tiling is fixed by the curva-
ture (see below) [13,14]. As a consequence of the latter
property, studying finite-size effects at constant curvature
requires to change the boundary condition. Building on our
earlier work [15], we have implemented two different
PBC’s: an octagonal PBC [Fig. 1(a)] and a PBC with a
larger unit cell formed by a regular fourteengon with a
specific pairing of the edges.

We have studied a monatomic liquid model in which
atoms pairwise interact via the standard truncated Lennard-
Jones potential vðrÞ ¼ 4�½ð�=rÞ12 � ð�=rÞ6� (with a cut-
off at 2:5�), where the distance r is defined with the
hyperbolic metric. The control parameters are the tempera-
ture T, the density �, and the frustration associated with
space curvature and characterized by the dimensionless
parameter ��. As already stressed, there are a number of
geometrical and topological constraints associated with the
PBC. For instance, the area of the unit cell is A ¼
4���2ðg� 1Þ, where g is the genus of the compact mani-
fold associated with the PBC and is equal to 2 for the
octagon and 3 for the fourteengon. For a given density, the
number N of atoms is thus fixed by the curvature and the
PBC: in the present work, N typically varies between 300
and 30 000 as one decreases the frustration. We are inter-
ested by weak frustration for which the local order remains
hexagonal as in the Euclidean plane. Indeed, for large
enough frustration, the preferred arrangement of atoms
around a central one is no longer a hexagon, but a hepta-
gon, with unfrustrated extension of the heptagonal order to
the whole space; on further increasing the frustration, one
encounters locally preferred arrangements formed by pol-
ygons with an increasingly larger number of sides [12].
(Disk packings for large negative curvature have also been
recently considered in [16].) Simulations are performed for

�� spanning 1 order of magnitude from 0.02 to 0.2. In
addition to computing usual static quantities, e.g., the pair
correlation function, we have carried out a direct analysis
of the topological defects, which will be discussed below,
and we have monitored several dynamic observables char-
acterizing the motion of the atoms. From the distance
traveled by any atom j between 2 times t0 and t0 þ t,
djðt0; t0 þ tÞ, we compute the hyperbolic generalization of

the self intermediate scattering function,

Fsðk; tÞ ¼ 1

N

XN
j¼1

hP�ð1=2Þþiðk=�Þ½coshð�djð0; tÞÞ�i; (2)

where P�ð1=2Þþiðk=�Þ is a Legendre function of first kind

[such that Eq. (2) reduces to the conventional spatial
Fourier transform in the Euclidean limit [17]].
As a benchmark, we have first considered the Euclidean

case (� ¼ 0). We find that, irrespective of the cooling rate,
the liquid orders in an hexagonal structure at a temperature
T�ð��2Þ [e.g. T�ð��2 ¼ 0:85Þ ’ 0:75 in Lennard-Jones
units]. No glass formation is therefore possible, as antici-
pated. A very different behavior is observed when frustra-
tion is switched on by curving space. No ordering
transition takes place (the transition at T� is thus
‘‘avoided’’[7]) and the liquid phase can now be cooled in
equilibrium below T�.
From Fsðk; tÞ with k chosen near the maximum of the

static structure factor (k ’ ��1), we have extracted the
translational relaxation time �, which is determined when
Fsðk; tÞ ¼ 0:1 [see Fig. 1(b)]. An alternative definition of �
is obtained from the fit of Fsðk; tÞ (beyond the plateau) to a
stretched exponential, e�ðt=�Þ� . Up to a multiplicative con-
stant, the two definitions of � give similar results for the T
dependence. At low enough T, one reaches the limit of the
computer resources and the liquid falls out of equilibrium
to freeze in an amorphous solid, i.e., a glass.
As shown in Fig. 2, one observes a striking pattern of

variation of fragility with frustration. At high T above T�,
the data show no dependence on curvature. This is easily
understood by combining the fact that the relaxation re-

FIG. 1 (color online). (a) The projection of H2 associated with the Poincaré disk model: atoms are represented by disks whose
diameter contracts as they move away from the center of the Poincaré disk. The geodesics are arcs of circles perpendicular to the disk
boundary. We also display the octagonal tiling (in which 8 octagons meet at each vertex) used in the PBC. (b) Fsðk; tÞ versus t for
�� ¼ 0:2 and for different temperatures T=T� ranging from 3.9 to 0.1 (left to right): for T � T� and below, stretched exponential
behavior, exp½�ðt=�Þ��, is observed with � decreasing from 1 at the highest T to 0.54 at the lowest equilibrated T; for T < 0:35T� the
system is out of equilibrium and ages (last three curves).
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mains a local phenomenon and that locally H2 appears flat
for the atoms (recall that �� � 1). A marked deviation
from Arrhenius dependence, i.e., a super-Arrhenius behav-
ior, is found below T�. The magnitude of this deviation
unambiguously increases as the frustration parameter is
reduced and one gets closer to the unfrustrated Euclidean
case. As predicted by the frustration-limited domain theory
[7], fragility therefore increases as frustration decreases. A
rationale for this trend is that as the system gets closer to
the avoided transition, the spatial correlations associated
with frustrated ordering grow larger; collective behavior
thus occurs on longer length scales, which results in a more
strongly super-Arrhenius dependence of the relaxation
time and a larger fragility. Note that in line with this
fragility pattern, the stretching exponent � is found to
decrease with decreasing frustration: at T=T� ’ 0:85, � ¼
0:64, 0.54, 0.50, 0.42 for �� ¼ 0:2, 0.1, 0.05, 0.02.

A crude heuristic argument suggests that the increase of
fragility goes logarithmically with the inverse of the frus-
tration. The idea is to compare the energy scales involved
in the activation barriers for relaxation at low and high T
and derive an estimate of the fragility through their ratio.
At high T, the scale is provided by the interaction energy
between atoms and is independent of curvature as seen
from Fig. 2. On the other hand, one expects that the low-T
dynamical behavior is controlled by the motion of the rare
frustration-induced defects (see below). An estimate for
the associated energy scale is obtained by considering the
continuum approach valid at sufficiently large wavelength

and low T. The energy of frustration-induced disclinations
(in an otherwise hexatic medium) is found to be a constant
plus a term proportional to ln½1= tanhð��=2Þ� [10], which
for small frustration behaves as ln½1=ð��Þ�. The ratio of
the energy scales at low and high T therefore goes as the
logarithm of 1=ð��Þ, which is compatible with the varia-
tion of fragility obtained from the simulation data. This
indicates that fragility can be made as large as wanted by
taking the limit of vanishingly small curvature.
Another canonical feature of slowly relaxing systems,

glass-forming liquids, in particular, is the ‘‘heterogeneous’’
nature of the dynamics [18–21]. This phenomenon is easily
detected by following the particle trajectories for a given
period of time, as shown in Figs. 3(a) and 3(b). Topological
defects [22] and/or medium-range ordering [23] have been
suggested as playing a role in disordered 2D phases exhib-
iting dynamic heterogeneities, and the present 2D mono-

FIG. 3 (color online). (a),(b) Atomic trajectories followed for a
time interval during which the average distance traveled by the
atoms is roughly � at (a) T=T� ¼ 2:4 and (b) T=T� ¼ 0:52.
Whereas at high T all atoms seem to move by a comparable
amount and the dynamics is thus spatially homogeneous, a
strikingly different picture is obtained at low T: most atoms
hardly move or just rattle in the cage formed by their neighbors
and mobility is concentrated in rare localized regions, illustrating
the spatial heterogeneity of the dynamics. (c),(d) Same atomic
configurations as in (a) and (b) (respectively), with the color
indicating the coordination number for each atom. Black: 6
neighbors (local hexagonal order), red: 7 neighbors (disclination
of topological charge ��=3), blue: 5 neighbors (disclination of
charge þ�=3); at T=T� ¼ 2:4 (c), there are also defects with
larger charges (orange: 8 neighbors, cyan: 4 neighbors). Note the
correspondence at low T between the rare localized defective
regions in (d) and the regions of high mobility in (b). The
frustration is �� ¼ 0:05 and the particle density ��2 ¼ 0:85.

×

FIG. 2 (color online). Arrhenius plot of the translational re-
laxation time � versus T�=T for several curvatures, where T� is
the (approximate) location of the ordering transition in the
Euclidean plane. The particle density is ��2 ¼ 0:85. Note the
deviation from the simple Arrhenius dependence shown by the
dashed line. As the frustration �� decreases, the deviation is
stronger; i.e., the fragility gets larger. The thick blue line above
T� corresponds to the Euclidean case. The continuous lines are
fits to the VFT formula, � ¼ �0 exp½DT0=ðT � T0Þ�: as frustra-
tion decreases, D is found to decrease from 10.8 to 4.6 while
T0=T

� increases from 0.12 to 0.33, which again indicates an
increase in fragility.
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disperse glass-forming liquid offers a unique opportunity
to investigate this point.

The topological defects can be defined at a microscopic
level by analyzing the local environment of each atom. To
do so, we use a curved-space generalization of the Voronoi
tessellation that provides an unambiguous means to assign
a number of nearest neighbors to each atom. Most atoms
have 6 neighbors, which corresponds to the hexagonal
local order. Defects, more specifically point ‘‘disclina-
tions’’, are then associated with atoms with a coordination
number different from 6. Negative curvature forces in an
irreducible number of disclinations of negative topological
charge (more than 6 neighbors), this number being fixed by
topological relations. In Figs. 3(c) and 3(d), we display the
same atomic configurations as those plotted in Figs. 3(a)
and 3(b) with a color code indicating the coordination
number of each atom. At high T, there is a large density
of defects and it is hardly possible to notice the imbalance
in favor of negative disclinations. At low T on the other
hand, the number of defects is small and one can clearly
see the emergence of large domains of local sixfold order
coexisting with small localized defective regions. A closer
inspection reveals that there are exactly 12 such regions
consisting of a sevenfold disclination and attached short
strings of little dipoles of fivefold and sevenfold disclina-
tions forming ‘‘dislocations.’’ Such strings have been
dubbed ‘‘grain boundary scars’’ in the context of crystals
on spherical surfaces [24]. (Note that the irreducible num-
ber of sevenfold disclinations is fixed by the PBC, here
12ðg� 1Þ with g ¼ 2, but that the irreducible density of
disclinations decreases, and the typical size of the locally
ordered domains increases, as curvature decreases.)
Comparison of the two sets of figures clearly shows that
the emerging heterogeneous character of the dynamics is
directly linked to the topological defects: at low T, the
regions of high mobility coincide with the vicinity of the
intrinsic frustration-induced defects and their attached
strings of dislocations whereas the regions of low mobility
coincide with the hexagonal patches. We stress that the
system is in a liquid phase even at low T and that all defects
and atoms move over long enough time spans. Preliminary
results on the four-point space-time correlation function
	4ðtÞ obtained as the variance of the local relaxation asso-
ciated with FSðk; tÞ [25] indicate that the spatial correla-
tions in the dynamics are maximum around a time scale of
the order of the relaxation time � and increase continuously
as T decreases. The phenomenology is thus similar to that
found in other glass formers [18–21].

The above results suggest the passage as T decreases
from a local atomic dynamics to a collective relaxation
controlled by the motion of topological defects, with an
intermediate region that is determined by the proximity to
the avoided transition at T�. This intermediate region
becomes more important as frustration decreases and one
expects that in this regime, growth of static spatial corre-
lations, super-Arrhenius behavior and extension of the
dynamic heterogeneities all go together. However, the ex-

tent of static spatial correlation saturates to a value given
by the intrinsic frustration length ��1 (which fixes the
average distance between the remaining intrinsic disclina-
tions); at low T and over distances beyond ��1, the slowing
down of relaxation should therefore be controlled by the
rare intrinsic sevenfold disclinations. One may speculate
that in this regime the growing dynamic correlations (as
extracted from 	4ðtÞ) decouple from the static spatial
correlations and reflect longer-range correlation among
the mobility regions associated with the residual defects.
Work is now in progress to investigate this potential low-T
decoupling phenomenon.
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