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We analyze the interference pattern produced by ultracold atoms released from an optical lattice,

commonly interpreted as the momentum distributions of the trapped quantum gas. We show that for finite

times of flight the resulting density distribution can, however, be significantly altered, similar to a near-

field diffraction regime in optics. We illustrate our findings with a simple model and realistic quantum

Monte Carlo simulations for bosonic atoms and compare the latter to experiments.
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Experiments with ultracold quantum gases in optical
lattices rely heavily on time-of-flight (ToF) expansion to
probe the spatial coherence properties of the trapped gas
[1–8]. When the phase coherence length is large compared
to the lattice spacing, the postexpansion density distribu-
tion shows a sharp interference pattern with the same
symmetry as the reciprocal lattice. As the phase coherence
length decreases, e.g., on approaching the Mott insulator
(MI) transition, the visibility of this interference pattern
decreases accordingly [1]. To obtain a more precise under-
standing beyond this qualitative description, it is usually
assumed that the density distribution nToFðrÞ of freely
expanding clouds provides a faithful map of the initial
momentum distribution.

In this Letter, we point out that, in general, the ToF
distribution differs from the momentum distribution for a
finite time of flight, the latter being recovered only in the
‘‘far-field’’ limit t ! 1. Practically, the ToF and momen-
tum distributions become identical after a characteristic
expansion time tFF ¼ mR0lc=@, which depends on the
particle mass m, the coherence length lc, and the cloud
size R0 prior to expansion. This time scale can be under-
stood in analogy with the diffraction of a coherent optical
wave by a periodic grating. Then the characteristic tFF in
the expansion problem exactly corresponds to the Fresnel
distance in the diffraction problem. The far-field regime is
typically reached when the coherence length is short, for
example, for a cloud in the MI regime or a thermal gas well
above the critical temperature. We show that, for phase-
coherent samples where a sizable fraction of the atoms are
Bose condensed, the far-field condition is usually not met
for typical expansion times used in current experiments [1–
8]. Experimental measurements and quantum Monte Carlo
simulations are used to demonstrate that this results in
substantial changes in the ToF distribution. We also discuss
implications for the interpretation of the ToF images.

We consider an ultracold boson cloud released from a
periodic trapping potential with cubic symmetry, lattice
spacing d ¼ �L=2, and lattice depth V0 given in units of
the single-photon recoil energy ER ¼ h2=2m�2

L, where �L

is the lattice laser wavelength. In addition to the lattice
potential, an ‘‘external’’ harmonic potential is present, due
to both the magnetic trap and the optical confinement
provided by the Gaussian-shaped lattice beams [4,9].
This external potential is responsible for the appearance
of a shell structure of alternating MI and superfluid regions
in the strongly interacting regime.
The density distribution after expansion for a time t is

usually expressed as a product (see, e.g., [10])

nToFðrÞ ¼
�
m

@t

�
3j ~w0ðkÞj2SðkÞ; with k ¼ mr

@t
; (1)

where an envelope function ~w0 is the Fourier transform of
the on-site Wannier function w0 and the interference term
is

S ðkÞ ¼ X
r�;r�

eik�ðr��r�Þhây�â�i: (2)

Here the operator ây� creates an atom at site r�. To assess

the validity of the far-field approximation used in Eq. (1),
we quickly outline its derivation. Neglecting interactions
during expansion (see below), the atomic field operator can

be expressed in Schrödinger’s picture as �̂ðr; tÞ ¼P
r�
W�ðr; tÞâ�, where W�ðr; t ¼ 0Þ ¼ w0ðr� r�Þ. After

the cloud is released, the wave function W� evolves in

free flight as W�ðr; tÞ � ðm
@tÞ3=2 ~w0ðmðr�r�Þ

@t Þei½mðr�r�Þ2=2@t� for
!Lt � 1, with !L the oscillation frequency at the bottom
of a lattice well. In the limit t ! 1, the dependence on the
initial site position r� vanishes, and one recovers Eq. (1).
For finite t, this dependence can be neglected in the enve-
lope function [11] but not in the phase factor. We thus
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obtain a generalized interference term

StðkÞ ¼
X
r�;r�

eik�ðr��r�Þ�iðm=2@tÞðr2��r2�Þhây�â�i: (3)

Note that experimentally one observes a column distribu-
tion integrated along the probe direction S?ðk?Þ ¼R
dkzj ~wðkzÞj2StðkÞ. This is included in latter comparison

with experiments, but in the following we base our dis-
cussion on Eq. (3) for simplicity.

A fruitful analogy can be made with the theory of optical
diffraction. The formation of the interference pattern re-
sults from the interference of many spherical matter waves
emitted from each lattice site, with phase relationships
reflecting the initial quantum state of the boson gas. We
can exploit this analogy further by defining the equivalent
of a Fresnel distance usually introduced in the theory of
optical diffraction to estimate the importance of the qua-
dratic phase factor / r2� � r2�. Because the correlation

function hây�â�i suppresses contributions from sites distant

by more than the characteristic coherence length lc, we can
estimate the magnitude of the quadratic phase in Eq. (3) as
m
2@t ðr2� � r2�Þ � ml2c

2@t near the cloud center and � mlcR0

@t near

the cloud edge. Here R0 is the characteristic size of the
cloud before expansion. The most restrictive condition to
apply the far-field approximation thus reads t � tFF, with

tFF � mlcR0

@
: (4)

As an example, for a 87Rb condensate with lc � R0 � 30d
and a lattice spacing d � 400 nm, one finds tFF � 100 ms,
much larger than typical expansion times t � 20 ms in
experiments [12]. In contrast, a gas with short coherence
length (e.g., in the MI regime), with lc * d, will enter the
far-field regime after a few milliseconds. We stress that the
quadratic Fresnel term is intrinsically nonlocal, as the
dephasing between two particular points r� and r� depends

not only on their relative separation but also on their
absolute positions. Although this has little effect deep in
the superfluid or in the MI phase, this casts serious doubts
on the validity of a local density approximation to compute
quantitatively the ToF distribution in regimes where the
coherence length is intermediate between the cloud radius
and the lattice spacing.

To illustrate the influence of Fresnel terms on the inter-
ference pattern, we consider a 1D lattice with uniform
phase and parabolic distribution of the occupation numbers

hây�â�i ¼ c�c�, with c� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�=NTFÞ2

p
. The ToF dis-

tribution is given by

Stð~kÞ ¼ 1

ð2NTF þ 1Þ2
��������

XNTF

l¼�NTF

cle
i~kl�i�2l2=2

��������
2

; (5)

with ~k ¼ kd, NTF ¼ R0=d ¼ 30 the Thomas-Fermi con-

densate size in lattice units, and where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md2=@t

p
. The

normalization factor ð2NTF þ 1Þ2 would give the peak
amplitude if the filling factor were uniform. We plot in
Fig. 1(a) the distributions corresponding to t ¼ 20 ms�
0:2tFF which shows a significant broadening of the distri-
bution for a short time of flight when compared to the
asymptotic result. For longer expansion times t� tFF �
100 ms, the far-field approximation is recovered to a good
approximation.
Qualitatively, we expect from dimensional arguments

that the peak width scales as ð�NTFÞ2 ¼ tFF=t in the near
field while approaching a constant value in the far field.

The peak height thus increases as ðt=tFFÞD in D dimen-
sions. This is confirmed by the one-dimensional calcula-
tion shown in Fig. 1(b). This dependence provides a means
to check the importance of near-field effects experimen-
tally. For the measurement, a sample of roughly 105 87Rb
atoms has been prepared in a three-dimensional optical
lattice with a depth Vy ¼ 6ER and subsequently released

for expansion [14]. After recording a series of absorption
images for different expansion times, the width of the
interference peaks was extracted using a Gaussian fit to
the images. We plot the results in Fig. 1(c), normalized to
the separation between two diffraction peaks for conve-
nience. The data confirm the tFF=t scaling, indicating that
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FIG. 1 (color online). (a) Momentum distributions for a one-
dimensional lattice with parabolic distribution of the occupation
numbers calculated using Eq. (5) (solid line: expansion time t ¼
20 ms; dashed line: expansion time t ¼ 100 ms; dotted-dashed
line: expansion time t ! 1). (b) Evolution of the peak ampli-
tude A with expansion time t=tFF. The dashed line shows the
expected near-field scaling in one dimension A / t=tFF. The
number of sites is 2NTF þ 1 ¼ 61 for (a) and (b). (c) Evo-
lution of the width of the diffraction peaks with expansion
time. The width has been normalized to the separation between
two adjacent diffraction peaks for convenience. The circles show
the experimental measurements and the solid line a fit by a
hyperbola / 1=t, as expected in the near field.
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the far-field asymptote is not reached even after the longest
expansion time available in the experiment.

We now discuss briefly the effect of interactions on the
expansion and show that this is negligible compared to the
finite ToF effect. When the cloud has just been released
from the lattice potential, each on-site wave function W�

expands independently with a characteristic expansion

time !�1
L , until t � t� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@=ð!LERÞ
p

where the wave
functions expanding from neighboring sites start to over-
lap. At this time, in the usual situation where !Lt

� � 1,
the local density has dropped dramatically by a factor
ð!LtÞ�3 � 1. Hence, the interaction energy converts into
kinetic energy on the time scale of a few oscillation periods
only, and expansion becomes rapidly ballistic. The pa-
rameter controlling the importance of interactions is given

by � ¼ U
@!L

� ffiffiffiffiffiffiffi
8�

p
asn0
�L

ðV0

ER
Þ1=4, with U being the on-site

interaction energy. For typical parameters, � is small (for
instance, � � 0:05 for V0 ¼ 10ER and the experimental
parameters of [3]). Hence, we expect only small correc-
tions to the noninteracting picture of ballistic expansion.
This has been confirmed using a variational model of the
expanding condensate wave function [15]. This model
predicts that the ‘‘Wannier’’ envelope expands faster as
compared to the noninteracting case, which does not affect
the interference pattern, and picks up a site-dependent
phase factor formally similar to the Fresnel term discussed
previously, but with a very weak prefactor � � 1 which
has negligible influence in practice. We conclude that
interactions essentially contribute to the expansion of the
on-site wave functions, without significant dephasing of
the interference pattern.

The discussion so far focused on fully phase-coherent
systems, which only applies to the weakly interacting
regime at low lattice depths. To investigate how the inter-
ference pattern is affected for strongly interacting systems
(i.e., on approaching the Mott transition and beyond), we
have performed large-scale three-dimensional quantum
Monte Carlo (QMC) simulations accounting for the exter-
nal trapping potential using the worm algorithm [16,17] in
the implementation of Ref. [18]. The calculations were
performed for N ¼ 8	 104 atoms, using exactly the
same parameters and system sizes (up to �2003) as in
the experiments reported in Ref. [3]. The simulation was
done at constant temperature T ¼ J=kB, where J is the
hopping amplitude. This temperature is low enough to
consider the system close to the ground state. Although
simulations at constant entropy would be closer to the
experimental situation, the temperature in the lattice was
found to depend weakly on lattice depth in this parameter
regime [19].

The ToF distributions calculated for finite and infinite
expansion times are shown in Fig. 2. The simulations
confirm explicitly the analysis made above: The interfer-
ence pattern is strongly affected in the superfluid phase,
and the effect becomes less and less pronounced as the

lattice depth is increased and the Mott transition crossed.
Note finally that the Fresnel phase suppresses the contri-
bution from the edges of the cloud, thus favoring the
contribution of the central region to the ToF pattern. This
is especially important when superfluid rings surround a
central MI region with lower coherence [20].
The interference pattern is often characterized by its

visibility

V ¼ nToFðkmaxÞ � nToFðkminÞ
nToFðkmaxÞ þ nToFðkminÞ ; (6)

with the choice kmaxd ¼ ð2�; 0Þ and kmind ¼ ffiffiffi
2

p ð�;�Þ to
cancel out the Wannier envelope in the division. We first
evaluate the sensitivity of V to the Fresnel phase by
plotting in Fig. 3 two theoretical ‘‘benchmark’’ curves
assuming perfect experimental resolution (dashed and
dotted-dashed lines for t ¼ 14 ms and t ! 1, respec-
tively). We find little difference between the two curves
when T=J is kept constant and small. Indeed, the Fresnel
terms matter only for systems with a large coherence
length, where the visibility is by construction very close
to unity. We conclude that a detailed investigation of the
superfluid side of the transition is better achieved by di-
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FIG. 2 (color online). Results from quantum Monte Carlo
simulations. On the left column, we show a horizontal cut
through the ToF distributions calculated using Eq. (3) for a finite
expansion time t ¼ 14 ms (solid line) compared to a cut through
the profile calculated for t ! 1 (dashed line). Units for n? are
arbitrary. The insets show directly the two-dimensional ToF
distributions for t ¼ 14 ms. On the right column, we show the
in-trap density profiles for reference. The lattice depths are V0 ¼
12ER (a),(d), 15ER (b),(e), and 17ER (c),(f), respectively.
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rectly measuring the ToF distributions, whereas the visi-
bility is well-suited for short coherence lengths.

We also compare in Fig. 3 the experiments reported in
Ref. [4] to the predictions of the QMC simulations (solid
line). Here, we emphasize that, apart from the Fresnel
terms, an accurate comparison requires one to account
for the experimental resolution, which is limited by two
effects. First, the signal was obtained by integration over a
square box centered around the maxima or minima, the
integration area being � ð0:11	 2�=dÞ2 in momentum
units. This is comparable to a typical peak area, so that
the visibility is calculated from the peak weight rather than
from its amplitude. Second, the finite resolution of the
imaging system (about 6 �m) is not negligible for the
sharpest peaks. Accounting for these two effects when
evaluating the QMC data, we find good agreement with
the experimental results, although a fully quantitative com-
parison would require performing simulations and experi-
ments at the same constant entropy. This entails that the
experimental data are compatible with the system remain-
ing at low enough temperatures (on the order of J=kB) to
cross a quantum-critical regime, in contrast to the analysis
made in Refs. [21,22] which included neither near-field
expansion nor experimental resolution.

In conclusion, we have analyzed the interference pattern
observed in the expansion of a bosonic quantum gas re-
leased from an optical lattice. We showed that, due to an
additional Fresnel-like phase appearing for a finite time of
flight, the ToF distribution can be markedly different from
the momentum distribution for clouds with large coherence
lengths. Conversely, the visibility as calculated from
Eq. (6) is rather insensitive to this effect. The Fresnel phase
acts as a magnifying lens for the central region undergoing
a Mott insulator transition by suppressing the contribution

of the outer regions of the cloud when the central density is
close to integer filling. This could eventually provide a way
to investigate the physics near the quantum-critical point
without ‘‘parasitic’’ contributions coming from coexisting
superfluid rings.
Simulations were ran on the Brutus cluster at ETH
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and I. Bloch, Phys. Rev. A 72, 053606 (2005).
[5] S. Ospelkaus et al., Phys. Rev. Lett. 96, 180403 (2006).
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FIG. 3 (color online). Visibility of the interference pattern as
defined in Eq. (6). The dashed and dotted-dashed lines show the
quantum Monte Carlo result for infinite and finite (t ¼ 14 ms)
expansion times, assuming perfect experimental resolution. The
solid line is computed for t ¼ 14 ms accounting for finite
experimental resolution. The simulations were performed at
constant temperature T ¼ J=kB.
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