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We point out that for an oscillator subjected to noise the conventional phase equation is not a proper

approximation even for weak noise. We present a phase reduction method valid for an oscillator subjected

to weak white Gaussian noise. Numerical evidence demonstrates that the phase equation properly

approximates dynamics of the original oscillator. Moreover, we show that, in general, noise causes a

shift of the oscillator frequency and discuss its effects on entrainment.
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Many physical systems can be mathematically modeled
by limit cycle oscillators. It is well known that oscillator
systems can exhibit a variety of behaviors. A fundamental
theoretical technique for studying oscillator dynamics is
the phase reduction method, which allows one to approxi-
mately describe the oscillator dynamics by a simpler equa-
tion for the phase variable only (e.g., [1]). This method has
been widely and successfully applied to coupled oscillators
or an oscillator subjected to an external periodic signal.

Dynamics of oscillators subjected to noises has also
attracted much interest (e.g., [1]) and it has been studied
by using the phase reduction method in a number of works
[2–5]. It has been believed that the phase reduction method
gives a good approximation for any type of weak signal
including noises [1]. Therefore, this method has been also
applied in a conventional way to the stochastic differential
equations which describe oscillators subjected to white
Gaussian noises in [2–5]. However, as we will show, the
phase equation obtained in such a way is incorrect in the
sense that it does not properly approximate the dynamics of
the original full oscillator system even in the weak noise
limit.

Phase reduction is a powerful method for studying es-
sential dynamics of oscillators. It is essential to extend its
domain of applicability to the case of oscillators subjected
to noises. We derive a phase equation valid for oscillators
subjected to white Gaussian noises. It is numerically dem-
onstrated that the present phase equation properly approx-
imates dynamics of the original full oscillator system while
the conventional phase equation fails. The present phase
equation reveals that in general a noise causes a shift of the
oscillator frequency. This effect cannot be described by the
conventional phase equation. We show that the noise-
induced frequency shift (NIFS) causes significant influen-
ces on entrainment of oscillators.

Let X ¼ ðx1; . . . ; xNÞ 2 RN be a state variable vector
and consider the stochastic differential equation

_X ¼ FðXÞ þGðXÞ�ðtÞ; (1)

where F is an unperturbed vector field, G is a vector
function, and �ðtÞ is the white Gaussian noise such that
h�ðtÞi ¼ 0 and h�ðtÞ�ðsÞi ¼ 2D�ðt� sÞ, where h� � �i de-

notes averaging over the realizations of � and � is Dirac’s
delta function. We call the constant D> 0 the noise inten-
sity. The unperturbed system _X ¼ FðXÞ is assumed to have
a limit cycle with a frequency !. We employ the
Stratonovich interpretation for Eq. (1). In this interpreta-
tion, ordinary variable transformation in differential equa-
tion can be applied.
Consider the unperturbed system _X ¼ FðXÞ and let

X0ðtÞ be its limit cycle solution. A phase coordinate �
can be defined in a neighborhood U of X0 in phase space.
We define � so that ðgradX�Þ � FðXÞ ¼ ! may hold for
any points in U. We can define the other N � 1 coordi-
nates r ¼ ðr1; . . . ; rN�1Þ in U. We assume that r ¼ a
on the limit cycle, where a ¼ ða1; . . . ; aN�1Þ is a constant
vector. If we perform the transformation ðx1; . . . ; xNÞ �
ð�; r1; . . . ; rN�1Þ in Eq. (1), we have

_� ¼ !þ hð�; rÞ�ðtÞ; (2)

_r i ¼ fið�; rÞ þ gið�; rÞ�ðtÞ; (3)

where i ¼ 1; . . . ; N � 1. The functions h, fi, and gi are
defined as follows: hð�; rÞ ¼ ðgradX�Þ � GðXð�; rÞÞ,
fið�; rÞ ¼ ðgradXriÞ � FðXð�; rÞÞ, gið�; rÞ ¼ ðgradXriÞ �
GðXð�; rÞÞ, where the gradients are evaluated at the point
Xð�; rÞ. They are 2�-periodic functions of �.
Stratonovich stochastic differential equations (2) and (3)

can be converted into the equivalent Ito stochastic differ-
ential equations [6]. The � component of this Ito-type
equation is obtained as follows:

_� ¼ !þD

�
@hð�; rÞ

@�
hð�; rÞ þ XN�1

i¼1

@hð�; rÞ
@ri

gið�; rÞ
�

þ hð�; rÞ�ðtÞ: (4)

In the case of weak noise 0<D � 1, the deviation of r
from a is expected to be small. Thus, we can use the
approximation r ¼ a in Eq. (4) and arrive at

_� ¼ !þD½Zð�ÞZ0ð�Þ þ Yð�Þ� þ Zð�Þ�ðtÞ; (5)

where Zð�Þ and Yð�Þ are given by
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Zð�Þ ¼ hð�;aÞ; Yð�Þ ¼ XN�1

i¼1

@hð�;aÞ
@ri

gið�;aÞ: (6)

Since h and gi are 2� periodic, Zð�þ 2�Þ ¼ Zð�Þ and
Yð�þ 2�Þ ¼ Yð�Þ hold. The Ito-type phase equation for
the noise-driven oscillator (1) is given by Eq. (5).

The conventional procedure of phase reduction consists
in substituting r ¼ a in Eq. (2). In the previous studies [2–
5], the authors obtained the Stratonovich-type equation
_� ¼ !þ Zð�Þ�ðtÞ, which is of the standard form of phase
equation, according to this procedure. The equivalent Ito-
type phase equation is given by

_� ¼ !þDZð�ÞZ0ð�Þ þ Zð�Þ�ðtÞ: (7)

Comparison of Eqs. (5) and (7) clearly shows that the term
DYð�Þ is dropped in the previously used equation (7). This
term is OðDÞ and is of the same order as DZð�ÞZ0ð�Þ.
Thus, in general, Eq. (7) does not correctly describe the
original oscillator dynamics even in the lowest order ap-
proximation. It should be noted that the approximation r ¼
a has to be performed in the Ito-type equation for �, but
not in the Stratonovich-type one, to obtain the correct
phase equation since the term DYð�Þ due to correlations
between fluctuations in r and � has to be included.

We outline a proof of Eq. (5). For simplicity, we consider
the case N ¼ 2 and denote ri, fi, and gi in Eq. (3) by r, f,
and g, respectively. Generalization for larger N is straight-
forward. We can assumewithout loss of generality that r ¼
0 on the limit cycle. The Fokker-Planck equation for
Eqs. (2) and (3) is given by

@Q

@t
¼ � @

@�
½f!þDðh�hþ hrgÞgQ� þD

@2½h2Q�
@�2

� @

@r
½ffþDðg�hþ grgÞgQ� þ 2D

@2½hgQ�
@�@r

þD
@2½g2Q�
@r2

; (8)

where Qðt; �; rÞ is the time-dependent probability distri-
bution and the subscripts � and r stand for partial deriva-
tives with respect to � and r, respectively.

Let � be a constant such that the region fð�; rÞ;�� �
r � �g is in the neighborhood U. When D ¼ 0, the steady
distribution is given byQ0ð�; rÞ ¼ ð2�Þ�1�ðrÞ, where � is
Dirac’s delta function. For small D> 0, the steady distri-
butionQ0 still localizes near r ¼ 0 and it rapidly decreases
with increasing jrj because of asymptotic stability of the
limit cycle. Assume that t is sufficiently large. Then, this
property also holds forQðt; �; rÞ, sinceQ converges toQ0.
Thus, Q ¼ 0 and @Q=@r ¼ 0 approximately hold at r ¼
�� for small D.

We introduce the marginal distribution Pðt; �Þ �R
�
�� Qðt; �; rÞdr, neglecting a small probability over the

region jrj>�. We integrate Eq. (8) with respect to r over
the interval I ¼ ½��; �� to obtain an approximate Fokker-
Planck equation for P. The last three terms in Eq. (8),

which include the derivative @=@r, vanish after the inte-
gration due to the two conditionsQ ¼ 0 and @Q=@r ¼ 0 at
r ¼ ��: for example,

R
I
@
@r ½ffþDðg�hþ grgÞgQ�dr ¼

½ffþDðg�hþ grgÞgQ���� ¼ 0. Therefore, after integrat-

ing Eq. (8), we have

@P

@t
¼ � @

@�

Z
I
ð!þDK1ÞQdrþD

@2

@�2

Z
I
K2Qdr;

(9)

where K1 and K2 are functions of � and r given by K1 ¼
h�hþ hrg and K2 ¼ h2.

The functions K1 and K2 can be expanded in the forms
K1 ¼ h�ð�; 0Þhð�; 0Þ þ hrð�; 0Þgð�; 0Þ þ rR1ð�; rÞ and

K2 ¼ hð�; 0Þ2 þ rR2ð�; rÞ, where R1 and R2 are functions
of Oð1Þ with respect to r. Since Zð�Þ ¼ hð�; 0Þ and
Yð�Þ ¼ hrð�; 0Þgð�; 0Þ from Eq. (6), K1 and K2 are re-
written asK1 ¼ Zð�ÞZ0ð�Þ þ Yð�Þ þ rR1ð�; rÞ andK2 ¼
Zð�Þ2 þ rR2ð�; rÞ. Consider the integrals RI rRiQdr, i ¼
1; 2. Recall that the steady distribution Q0 of Eq. (8) sat-
isfies limD!0Q0ð�; rÞ ¼ ð2�Þ�1�ðrÞ. Since Qðt; �; rÞ ’
Q0ð�; rÞ holds, the profile of Qðt; �; rÞ in r may be ap-
proximated by �ðrÞ in the limit D ! 0. If we use this
approximation and note that rRi ¼ OðrÞ, we have
limD!0

R
I rRiQdr ¼ 0. This implies that D @

@� �R
I rR1Qdr ¼ oðDÞ and D @2

@�2

R
I rR2Qdr ¼ oðDÞ. If we

substitute the expansions of K1 and K2 into Eq. (9) and use
these facts, we can obtain the approximate Fokker-Planck
equation up to OðDÞ as follows:

@P

@t
¼ � @

@�
½f!þDðZZ0 þ YÞgP� þD

@2

@�2
½Z2P�:

(10)

The stochastic differential equation equivalent to Eq. (10)
is given by Eq. (5). Thus, we may conclude that Eq. (5) is a
proper phase equation for system (1).
We calculate the steady probability distribution P0ð�Þ of

the phase variable and the mean frequency �. We will
compare these quantities between a two dimensional os-
cillator model and its reduced phase model.
We consider Eq. (10) with the boundary condition

Pðt; 0Þ ¼ Pðt; 2�Þ, which is equivalent to Eq. (5). The
steady solution P0ð�Þ is obtained by assuming @P=@t ¼
0 in Eq. (10). If we construct an asymptotic solution for P0

in the power of " � D=!, then up to Oð"Þ we obtain

P0ð�Þ ¼ 1

2�
þ "

2�
½Zð�ÞZ0ð�Þ � Yð�Þ þ �Y� þ oð"Þ;

(11)

where �Y is defined by �Y ¼ ð2�Þ�1
R
2�
0 Yð�Þd�.

The mean frequency � of the oscillator is defined by

� ¼ limT!1T�1
R
T
0

_�ðtÞdt. This can be calculated by re-

placing the time average with the ensemble average; i.e.,

� ¼ h _�i. There is no correlation between � and � in the
Ito equation. If we take the ensemble average of Eq. (5), we
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have � ¼ !þDhZð�ÞZ0ð�Þ þ Yð�Þi, where we used the
fact hZð�Þ�ðtÞi ¼ hZð�Þih�ðtÞi ¼ 0. For an arbitrary func-
tion Að�Þ, its ensemble average can be calculated by using
P0; i.e., hAi ¼

R
2�
0 Að�ÞP0ð�Þd�. If we use Eq. (11), we

obtain � up to Oð"Þ as follows:

�=! ¼ 1þ " �Y þ oð"Þ: (12)

Since the white Gaussian noise has no characteristic fre-
quency, intuitively, one might expect that it causes no
change in the oscillator frequency. However, this is not
the case. Equation (12) shows that a white Gaussian noise
does change �; i.e., the NIFS occurs. It depends on the
sign of �Y whether � increases or decreases as the noise
intensity increases.

Equations (11) and (12) show that the term Yð�Þ in
Eq. (5) significantly affects both P0ð�Þ and � in the first
order of ". In particular, as shown by Eq. (12), the first-
order frequency shift is determined only from Yð�Þ.
Therefore, it is crucially important to include the term
Yð�Þ into the phase equation as in Eq. (5). It is clear that
the previously used phase equation (7) cannot give proper
approximations for P0ð�Þ and �.

In order to validate Eq. (5), we compare P0ð�Þ and �
between theoretical and numerical results. As an example,
we use the Stuart-Landau (SL) oscillator [1]: X ¼ ðx; yÞ
and FðXÞ ¼ ðx� c0y� ðx2 þ y2Þðx� c2yÞ; c0xþ y�
ðx2 þ y2Þðc2xþ yÞÞ in Eq. (1), where c0 and c2 are con-
stants. The noise-free SL oscillator has the limit cycle
X0ðtÞ ¼ ðcos!t; sin!tÞ, where the natural frequency ! is
given by ! ¼ c0 � c2. If we define the coordinates (�; r)
by x ¼ r cosð�þ c2 lnrÞ and y ¼ r sinð�þ c2 lnrÞ, then
� gives the phase variable and the limit cycle is repre-
sented by r ¼ 1.

We use the two types of G: G1 ¼ ð1; 0Þ and G2 ¼ ðx; 0Þ.
For G1, Zð�Þ and Yð�Þ are given by Zð�Þ ¼ �ðsin�þ
c2 cos�Þ and Yð�Þ ¼ fð1þ c22Þ=2g sin2�. For G2,
they are Zð�Þ ¼ � cos�ðsin�þ c2 cos�Þ and Yð�Þ ¼
c2cos

2�ð� cos2�þ c2 sin2�Þ. Approximations for
P0ð�Þ and � can be obtained by substituting these ex-
pressions for Zð�Þ and Yð�Þ into Eqs. (11) and (12).

In Figs. 1(a)–1(d), numerical and theoretical results for
P0ð�Þ are compared: the filled circle and solid line repre-
sent P0ð�Þ obtained by numerically solving the equation of
the SL oscillator and that given by Eq. (11), respectively.
Theoretical predictions made by Eq. (7), which are ob-
tained just by setting Y ¼ 0 in Eq. (11), are also shown by
the dashed line. Figures 1(a) and 1(b) are for G1 while
Figs. 1(c) and 1(d) are for G2. It is clear that the present
phase model (5) gives precise approximations in all the
cases. The agreements are excellent. In contrast, the pre-
viously used phase model (7) does not give proper approx-
imations at all in spite of the weak noise intensity.

Figures 2(a) and 2(b) show the mean frequency �
plotted against " ¼ D=! for G1 and G2, respectively,
where the natural frequency is set as! ¼ 1. The numerical
results obtained by solving the equation of the SL oscillator

are shown by filled or open circles. The theoretical esti-
mations given by Eq. (12) are shown by a solid line or a
dashed line. The theoretical estimation is�=! ¼ 1þ oð"Þ
for G1, which is constant up to Oð"Þ. In Fig. 2(a), the
numerically obtained � is almost constant for ðc0; c2Þ ¼
ð1; 0Þ. This coincides with the above theoretical estimation.
For ðc0; c2Þ ¼ ð2; 1Þ, the numerically obtained � is not
constant but increases with increasing ". However, this
increase is not linear with respect to " but a higher order
one as shown in the inset. In this sense, an agreement
between the numerical and theoretical results is confirmed
up to Oð"Þ. In the case of G2, the theoretical estimation is
given by �=! ¼ 1� ðc2=4Þ"þ oð"Þ, which has a non-
vanishing term of Oð"Þ except for c2 ¼ 0. This indicates
that � can either increase or decrease, depending on the
sign of c2. In Fig. 2(b), this estimation well agrees with the
numerical result in each of the cases ðc0; c2Þ ¼ ð2; 1Þ and
ð0;�1Þ. If we use Eq. (7) instead of Eq. (5), then we obtain
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FIG. 1. Steady probability distribution P0ð�Þ of phase for
noise-driven SL oscillator. Numerical result (d), analytical
result Eq. (11) (solid line), and that obtained from Eq. (7)
(dashed line) are shown for " ¼ 0:03. (a) G1 and ðc0; c2Þ ¼
ð1; 0Þ, (b) G1 and ðc0; c2Þ ¼ ð2; 1Þ, (c) G2 and ðc0; c2Þ ¼ ð2; 1Þ,
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FIG. 2. Mean frequency � vs " for (a) G1 and (b) G2.
Numerical result (symbol) and analytical result Eq. (12) (line)
are shown. (a) ðc0; c2Þ ¼ ð1; 0Þ (d, dashed line) and ðc0; c2Þ ¼
ð2; 1Þ (	, dashed line), (b) ðc0; c2Þ ¼ ð2; 1Þ (d, dashed line) and
ðc0; c2Þ ¼ ð0;�1Þ (	, solid line). The inset in (a) is logarithmic
plot of ��! vs " for ðc0; c2Þ ¼ ð2; 1Þ, where reference line for
the scaling law "1 is also shown.
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the estimation�=! ¼ 1þ oð"Þ for G2, in which the Oð"Þ
term vanishes. This estimation apparently disagrees with
the numerical results.

Figures 1 and 2 clearly demonstrate that Eq. (5) pre-
cisely approximates dynamics of oscillators with weak
white Gaussian noises. In addition, it is apparent that the
previously used equation (7) is erroneous.

The present phase equation (5) has revealed that a noise
shifts the frequency of an oscillator. We show that this
NIFS plays an important role in entrainment phenomena.
As a simple example for demonstration, let us consider the
SL oscillator with a noise and a periodic signal, which is
described by _X ¼ FðXÞ þG2ðXÞ�ðtÞ þ K cosð!0tÞ,
where X ¼ ðx; yÞ, F is the vector field of the SL oscillator
with ðc0; c2Þ ¼ ð2; 1Þ, G2 ¼ ðx; 0Þ, �ðtÞ is the white
Gaussian noise, and K ¼ ð�; 0Þ is a constant vector. We
define the detuning �! by �! ¼ !0 �!, where ! is the
natural frequency.

Figure 3(a) shows frequency locking regions in the
(�!;�) plane for D ¼ 0 and 0.02. The locking condition
j��!0j< 10�3 holds in a wedge-shaped region between
two boundaries shown by a dashed line or a solid line. The
locking region is centered at �! ¼ 0 when D ¼ 0. In
contrast, when D ¼ 0:02, the center of the locking region
clearly shifts to the negative direction as if the oscillator
has a smaller natural frequency. Locking regions obtained
by numerically solving the corresponding phase equations,
which are obtained by adding the periodic term ðgradX�Þ �
K cosð!0tÞ to Eq. (5) and (7), are also shown. Equation (5)
with the periodic term properly describes this effect, show-
ing a good agreement, while Eq. (7) with the periodic term
does not, which lacks the term Yð�Þ and cannot describe
the NIFS. The amount of the center-frequency shift in �!
is �0:005, and this value coincides with the amount of
NIFS obtained from the analytical formula �=! ¼ 1�
ðc2=4Þ" with ! ¼ 1, c2 ¼ 1, and " ¼ 0:02. Thus, we may
conclude that the center-frequency shift of the locking
region is an effect due to the NIFS. In Fig. 3(b), the phase
difference � ¼ ��!0t is plotted against time t for two
cases indicated in Fig. 3(a). The average laminar time is
much longer for A than B and a better-quality locking is
achieved in case A, although case B has a smaller original

detuning and a better-quality locking is expected from
Eq. (7).
The above results clearly indicate that the original de-

tuning !0 �! is not relevant, but the effective detuning
!0 ��, where � is given by Eq. (12), is an important
parameter, which characterizes the nature of entrainment
in an oscillator with noise. It is expected that the effective
detuning, which takes into account the NIFS, is also im-
portant for characterizing the entrainment transition in
mutually coupled two oscillators or an ensemble of many
oscillators when they are subjected to noises. Theoretical
studies lacking the NIFS effect could lead to incorrect
scenarios for entrainment in noisy oscillator systems.
Suppose an ensemble of many nonidentical noisy oscilla-
tors: the amount of NIFS of each oscillator is different. It
could happen that the natural-frequency and effective-
frequency distributions are qualitatively different; for ex-
ample, the latter could have a double-peak profile while the
former could have a single-peak profile. The conventional
theory lacking the NIFS effect describes the entrainment
transition scenario based on the natural-frequency distri-
bution. However, the transition is expected to be dominated
by the effective-frequency distribution. Then, the conven-
tional theory could lead to an incorrect scenario. We em-
phasize that it is essential to use Eq. (5) to correctly
describe and understand the nature of entrainment in vari-
ous physical systems subjected to noises.
In conclusion, we have developed the phase reduction

method valid for oscillators subjected to weak white
Gaussian noises. We showed that in general the NIFS
occurs and discussed its effects on entrainment phenome-
non. The present results suggest that a modification of the
phase reduction method is necessary also for noises other
than the white Gaussian noise, which have finite correla-
tion times.
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FIG. 3. (a) Frequency locking region of SL oscillator with
periodic signal, where ðc0; c2Þ ¼ ð2; 1Þ. Locking regions forD ¼
0 (dashed line) and 0.02 (solid line) are shown. Regions for D ¼
0:02 obtained by Eqs. (5) (	) and (7) (d) with the periodic term
are also shown. (b) � vs t for cases A and B (D ¼ 0:02).
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