
Development of Electron-Proton Density Functionals
for Multicomponent Density Functional Theory

Arindam Chakraborty, Michael V. Pak, and Sharon Hammes-Schiffer*

Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, Pennsylvania 16802, USA
(Received 18 July 2007; revised manuscript received 9 June 2008; published 8 October 2008)

We present a strategy for the development of electron-proton density functionals in multicomponent

density functional theory, treating electrons and selected nuclei quantum mechanically without the Born-

Oppenheimer approximation. An electron-proton functional is derived using an explicitly correlated

electron-proton pair density. This functional provides accurate hydrogen nuclear densities, thereby

enabling reliable calculations of molecular properties. This approach is potentially applicable to relatively

large molecular systems with key hydrogen nuclei treated quantum mechanically.

DOI: 10.1103/PhysRevLett.101.153001 PACS numbers: 31.15.E�, 31.15.A�

Density functional theory (DFT) is a powerful tool for
electronic structure calculations of molecules, materials,
and biological systems [1]. Conventional DFT is based on
the Born-Oppenheimer separation of electrons and nuclei,
and typically the nuclei are treated classically. Nuclear
quantum effects play an important role in a wide range of
processes, particularly for hydrogen bonding and hydrogen
transfer. A multicomponent DFT for electrons and nuclei,
which treats both electrons and nuclei quantum mechani-
cally without the Born-Oppenheimer approximation, has
been proposed [2–4]. Although the existence of ground-
state density functionals in terms of the one-particle elec-
tronic and nuclear densities has been proven [2,5], the
development of such electronic-nuclear functionals is chal-
lenging. Reparametrizing existing electronic functionals
for use as electron-proton functionals [6] is not physi-
cally meaningful due to the fundamental differences be-
tween electron-electron and electron-proton interactions.
Approximate electronic-nuclear functionals in terms of the
one-particle electron density and the Nn particle nuclear
density matrix have been proposed for systems in which all
Nn nuclei are treated quantum mechanically, but this ap-
proach has not been extended beyond H2

þ [4].
Previously we developed the nuclear-electronic orbital

(NEO) approach [7], in which only selected nuclei are
treated quantum mechanically on the same level as the
electrons, while the remaining nuclei are treated classi-
cally. This approach is designed for systems in which at
least two nuclei are treated classically, thereby eliminating
the difficulties associated with translations and rotations.
Inadequate treatment of electron-proton correlation has
been shown to result in nonphysical extreme localization
of the nuclear wave functions, leading to severe overesti-
mation of hydrogen vibrational frequencies with errors that
are often on the same order as the frequencies themselves
[4,8]. The overlocalization of the nuclear wave function
also significantly affects other physical properties, such as
geometries, isotope effects, and tunneling splittings.
Electron-proton dynamical correlation has a greater quali-
tative impact on the wave function than electron-electron

or proton-proton dynamical correlation because of the
attractive interaction between the electron and proton and
the disparity in the masses. To address this problem, we
developed an explicitly correlated method for the inclusion
of electron-proton correlation [8,9]. An alternative route is
the development of electron-proton density functionals
within the context of multicomponent DFT. The advantage
of this route is that it enables the consistent treatment of
electron-electron and electron-proton correlation and has
the potential to be computationally practical for relatively
large molecules. In this Letter, we propose a general strat-
egy for designing electron-proton density functionals in
terms of the one-particle electronic and nuclear densities.
The existence of such an electron-proton functional within
the framework of a formally exact multicomponent DFT
has been proven [2,5]. Our objective is to develop electron-
proton functionals that provide accurate ground-state hy-
drogen nuclear densities in molecular systems.
We develop an electron-proton functional for a system

with Ne electrons, Np quantum protons, and Nc classical

point charges. For this system, the Hamiltonian is
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where vðr1Þ is the interaction between the electron or pro-
ton and the classical nuclei, and rei and rpi denote spatial
coordinates of the electrons and protons, respectively.
As in conventional DFT, the ground-state energy is the

minimum of the energy functional

E½�e; �p� ¼
Z

dre1�
eðre1Þvðre1Þ �

Z
drp1�

pðrp1 Þvðrp1 Þ
þ F½�e; �p�; (2)

where F½�e; �p� ¼ min�!�e;�ph�jH0j�i and H0 is the
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Hamiltonian operator in Eq. (1) without the terms corre-
sponding to interactions with the classical nuclei. The
ground-state electron and proton densities, as well as the
ground-state energy, are obtained by minimizing E½�e; �p�
subject to the constraints

R
dre1�

eðre1Þ ¼ Ne andR
drp1�

pðrp1 Þ ¼ Np. Analogous to electronic DFT, we in-

voke a corresponding noninteracting reference system, in
which all quantum particles (i.e., electrons and quantum
protons) do not interact with each other. For this system,
the ground-state electron-proton wave function can be
represented by the product of electronic and nuclear
Slater determinants, �sðxe;xpÞ ¼ �e

sðxeÞ�p
s ðxpÞ, where

the electronic and nuclear spatial orbitals are determined
by the corresponding one-particle Hamiltonians.

Following the Kohn-Sham procedure [10], we express
F½�e; �p� for the interacting system as

F½�e;�p�¼Ts½�e;�p�þJep½�e;�p�þEepc½�e;�p�
þJee½�e�þEexc½�e�þJpp½�p�þEpxc½�p�;

(3)

Eepc½�e; �p� ¼ Vep½�e; �p� � Jep½�e; �p�; (4)

Eexc½�e� ¼ Tee½�e� � Te
s ½�e� þ Vee½�e� � Jee½�e�; (5)

Epxc½�p�¼Tpp½�p��Tp
s ½�p�þVpp½�p��Jpp½�p�: (6)

The classical parts of the electron-proton and electron-
electron Coulomb interactions are
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(7)

and the proton-proton classical Coulomb interaction
Jpp½�p� is defined analogously. Te

s ½�e� is the electronic

kinetic energy for the noninteracting system, and Tee½�e�
and Vee½�e� are the electronic kinetic energy and the
electron-electron interaction energy, respectively, includ-
ing electron-electron correlation effects depending on only
�e. Tp

s ½�p�, Tpp½�p�, and Vpp½�p� are defined analogously
for protons. Vep½�e; �p� is the electron-proton interaction

energy including electron-proton correlation effects. These
quantities are defined in this manner for consistency with
standard electronic functionals. Based on these definitions,
the exact form of Eq. (4) may include additional terms (i.e.,
residual electron-electron and proton-proton correlation
effects that depend on both �e and �p and electron-proton
correlation effects that impact the kinetic energies), but
these terms are expected to be smaller than the electron-
proton interaction terms and are neglected for simplicity.

The electron-proton Kohn-Sham equations are
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where �eðre1Þ ¼
PNe

i¼1 jc e
i ðre1Þj2, and �pðrp1 Þ ¼PNp

i¼1 jc p
i ðrp1 Þj2. These equations can be solved iteratively

to self-consistency.
The objective of this Letter is to derive an electron-

proton correlation functional by analyzing the relationship
between the electron-proton pair density and the one-
particle electron and proton densities associated with an
explicitly correlated wave function constructed with
Gaussian-type geminals. The electron-proton correlation
functional is defined using Eq. (4) as

Eepc½�e; �p� ¼
ZZ

dre1dr
p
1�

epðre1; rp1 Þ=jre1 � rp1 j
� Jep½�e; �p�; (9)

and the functional dependence of the electron-proton pair
density �ep on the one-particle densities �e and �p is
determined from the analysis of the explicitly correlated
wave function. Similar strategies based on explicitly cor-
related electronic wave functions were used previously to
develop electronic density functionals [11]. The present
work differs from this previous work in terms of the
multicomponent nature of the system, the form of the
geminal ansatz of the wave function, the approximations
invoked, and the analytical properties of the functional.
This Letter focuses on the development of an electron-

proton correlation functional. Because of the definition of
Eexc½�e� in Eq. (5), the standard electronic functionals can
be used in this formulation to include electron-electron
exchange and correlation effects. We have implemented a
NEO-DFT(ee) method that includes only electron-electron
correlation in this manner [12]. Note that the standard
electronic functionals are parametrized without the inclu-
sion of nuclear quantum effects and electron-proton corre-
lation. In principle, this formalism could also include
proton-proton exchange and correlation if suitable nuclear
functionals were available. For typical molecular systems
with only selected hydrogen nuclei treated quantum me-
chanically in a suitable manner, however, the proton-
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proton exchange and dynamical correlation effects are
significantly smaller than the electron-electron and
electron-proton counterparts because the proton densities
are much more localized and spatially separated than the
electron densities. In practice, the quantum protons may be
treated with a generalized Hartree-Fock (HF) approach in
which each proton can occupy a different spatial orbital,
and Hartree-Fock exchange for protons may be included to
alleviate potential difficulties with self-interaction.

Our ansatz for the form of the explicitly correlated
nuclear-electronic wave function is

�gemðxe;xpÞ ¼ �eðxeÞ�pðxpÞ½1þGðre; rpÞ�; (10)

where the Gaussian-type geminal expansion is defined as

Gðre; rpÞ ¼ 1

2
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bk exp½��kjrei � rpj j2�
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2
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XNp

j¼1
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Previously we developed an explicitly correlated HF
method, NEO-XCHF, which includes explicit electron-
proton correlation directly into the NEO self-consistent-
field procedure using this ansatz with the variational
method [8,9]. Note that the definition of g in Eq. (11)
differs by a factor of 2 compared to this previous work to
simplify the subsequent equations. Unfortunately, the
NEO-XCHF approach becomes expensive for large,
many-electron systems, but it can be used as the basis for
the development of electron-proton density functionals.

The electron-proton pair density �epðre1; rp1 Þ is obtained
from the geminal wave function in Eq. (10) by integrating
over the appropriate electronic and proton coordinates,
retaining only first-order terms, and normalizing so that
h�epðre1; rp1 Þiep ¼ NeNp. The one-particle densities �eðre1Þ
and �pðrp1 Þ are obtained from �epðre1; rp1 Þ by imposing the
sum-rule conditions �eðre1Þ ¼ N�1

p h�epðre1; rp1 Þip and

�pðrp1 Þ ¼ N�1
e h�epðre1; rp1 Þie. The resulting densities are

�epðre1; rp1 Þ ¼
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e ieÞ
1þ h~�e ~�pgN�1
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Here the densities associated with the electronic and nu-
clear Slater determinants in the geminal wave function are
denoted as ~�eðre1Þ and ~�pðrp1 Þ, respectively, and are referred
to as auxiliary densities. These auxiliary densities are
distinct from the geminal densities �epðre1; rp1 Þ, �eðre1Þ,
and �pðrp1 Þ obtained from the complete geminal wave

function. The subscripts on the angular brackets indicate

if the integration is carried over the electron coordinate, the
proton coordinate, or both coordinates. We neglect the
contributions of the higher-order auxiliary density terms
Oð~�e

2; ~�
p
2 ; g

2Þ. Both the auxiliary and geminal densities are

normalized to the number of particles when integrated over
all space. The geminal one-particle densities depend on
both the electron and proton auxiliary densities, and the
geminal electron-proton pair density depends on the gemi-
nal one-particle densities through the auxiliary densities.
In principle, Eqs. (13) and (14) can be inverted to obtain

expressions for the auxiliary densities in terms of the
geminal one-particle densities, which in turn can be sub-
stituted into the expression for the geminal electron-proton
pair density in Eq. (12) to obtain a functional relationship
between the geminal electron-proton pair density and the
geminal one-particle densities. However, the analytical
solution of these coupled equations is not known and
may not exist for all geminal densities, so we obtain an
approximate solution. Retaining the property that
limrep!1�ep ¼ ~�e ~�p ¼ �e�p, we replace ~�e and ~�p

with �e and �p, respectively, whenever they are multiplied
by the geminal function g. This approximation leads to

�epðre1; rp1 Þ ¼
~�e ~�p þ �e�pg

1þ h�e�pgN�1
e N�1

p iep
: (15)

Using �ep from Eq. (15), the two sum-rule condition
equations given above can be solved analytically to obtain
the auxiliary densities in terms of the geminal one-particle
densities [i.e., Eqs. (13) and (14) with the replacements
used to obtain Eq. (15) from Eq. (12)]. The resulting
expressions for the auxiliary densities can be substituted
into Eq. (15) to obtain the geminal electron-proton pair
density in terms of the geminal one-particle densities.
The final approximate expression for the geminal

electron-proton pair density is

�epðre1; rp1 Þ ¼ �e�p þ �e�ph�e�pgN�1
e N�1

p iep
� �e�ph�egN�1

e ie � �e�ph�pgN�1
p ip

þ �e�ph�pgN�1
p iph�egN�1

e ie
1þ h�e�pgN�1

e N�1
p iep

þ �e�pg

1þ h�e�pgN�1
e N�1

p iep
: (16)

Here the first term �e�p is the uncorrelated electron-proton
pair density and is responsible for the classical electron-
proton Coulomb term Jep. The remaining terms explicitly

couple the electron and proton densities through the gemi-
nal function g. The electron-proton pair density in Eq. (16)
was constructed to become �e�p when g ¼ 0 and to satisfy
the sum-rule conditions. Other pair densities satisfying
these criteria could be constructed using different approx-
imations. Within the Kohn-Sham formalism, the electron-
proton correlation functional is defined by substituting the
geminal electron-proton pair density �epðre1; rp1 Þ from
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Eq. (16) into Eq. (9), where the one-particle densities �e

and �p are obtained from the Kohn-Sham orbitals.
To test this electron-proton functional, we applied it to

the ½He-H-He�þ system using NEO-DFT, an implementa-
tion of multicomponent DFT. The two helium nuclei are
treated classically, and the hydrogen nucleus and four
electrons are treated quantum mechanically. We used the
same electronic and nuclear basis sets as in Ref. [9] to
allow a consistent comparison to previously reported re-
sults using the NEO-XCHF and Fourier grid Hamiltonian
(FGH) methods. The electronic and nuclear basis functions
for the hydrogen were placed at the midpoint between the
two helium nuclei. The distance between the two helium
nuclei was chosen to be the equilibrium distance of 1.85 Å.
Only a single Gaussian-type geminal was included in the
electron-proton density functional. The values of b and �
for this geminal function were chosen to be those that were
variationally optimized previously for a one-electron, one-
proton model system using the NEO-XCHF method [8].
The values of these parameters are considered to be part of
the electron-proton functional and are fixed during the
NEO-DFT calculations. For these calculations, ve

excðre1Þ is
the Hartree-Fock electron exchange operator, but electron-
electron correlation could be included with standard elec-
tronic functionals. With only a single quantum proton, the
proton-proton Coulomb interaction and vp

pxcðrp1 Þ are omit-

ted. This implementation is a hybrid DFT because it in-
cludes Hartree-Fock exchange for identical particles.

The results of these calculations are given in Table I. In
general, the NEO-HF method produces nuclear wave func-
tions that are too localized, leading to severe overestima-
tions of hydrogen vibrational frequencies [8]. Table I indi-
cates that the NEO-HF frequency is�2000 cm�1 too high,
whereas the NEO-DFT frequency is within �50 cm�1 of
the FGH and NEO-XCHF frequencies. This qualitative
improvement in the nuclear density is critical for calculat-
ing all vibrationally averaged properties. The total NEO-
DFT energy is significantly lower than the total NEO-HF
energy but is still above the NEO-XCHF energy. The NEO-
DFT approach is computationally much faster than the
NEO-XCHF approach because it requires significantly
fewer computationally expensive atomic orbital integrals
involving geminal functions. Even for this small system,
the NEO-DFT calculations are �1400 times faster than
the NEO-XCHF calculations. Thus, this electron-proton
functional solves the pervasive problem of overlocalization
of the nuclear density in a computationally practical
manner.

The strategy presented here for deriving electron-proton
density functionals can be improved and extended in many
directions. The expressions in Eqs. (12)–(14) could be
solved using density fitting methods or by invoking alter-
native approximations that still satisfy the sum rules.
Higher-order density terms could be included in these
expressions. Moreover, the parameters in the geminal func-

tions could be used as free parameters fit to molecular
properties of a chosen data set.
We have proposed a general strategy for the develop-

ment of electron-proton density functionals using an ex-
plicitly correlated electron-proton pair density. In NEO-
DFT, typically only the chemically relevant hydrogen nu-
clei are treated quantum mechanically. This approach pro-
vides accurate ground-state hydrogen nuclear densities,
enabling the reliable calculation of geometries, energies,
frequencies, and isotope effects. Because of the local na-
ture of the hydrogen nuclear densities in molecular sys-
tems, the scaling of this approach with the number of
electrons will be similar to that of conventional electronic
DFT. Thus, this approach is potentially applicable to rela-
tively large, many-electron molecular systems of chemical
and biological significance.
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TABLE I. The frequencies in cm�1 for the ½He-H-He�þ sys-
tem with H, D, and T as the central nucleus. The frequencies
were determined from a Gaussian fit of the nuclear density along
the He-He axis.

NEO-HFa,b NEO-XCHFa,b FGHa NEO-DFTb,c �Ed

H 3759 1030 1107 1072 �0:052
D 2738 725 783 770 �0:044
T 2274 588 639 630 �0:041

aResults from Ref. [9]. NEO-HF is Eq. (10) with g ¼ 0.
bNEO calculations used a five 1s proton basis set [8].
cThe electron-proton functional used a single geminal function
with b ¼ 0:852 a:u: and � ¼ 1:962 a:u:
d�E ¼ ENEO-DFT � ENEO-HF is total energy difference in a.u.
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