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By defining ‘‘a virtual gap’’ for the continuous spectrum through the notion of eigendifferential (Weyl’s

packet) and using the differential projector operator, we present a rigorous demonstration and discussion

of the quantum adiabatic theorem for systems having a nondegenerate continuous spectrum. An explicit

formula for a generalized geometrical phase is derived in terms of the eigenstates of the Hamiltonian.

Examples are given for illustration.

DOI: 10.1103/PhysRevLett.101.150407 PACS numbers: 03.65.Ca, 03.65.Nk, 03.65.Ta, 03.65.Vf

The adiabatic theorem (AT) is one of the basic results in
quantum theory [1]. It is concerned with quantum systems
described by an explicitly, but slowly, time-dependent
Hamiltonian. This AT concerns states j ðtÞi satisfying
the time-dependent Schrödinger equation

i@
@

@t
j ðtÞi ¼ HðtÞj ðtÞi; (1)

and asserts that if a quantum system with a time-dependent
nondegenerate Hamiltonian HðtÞ is initially in the nth
eigenstates of Hð0Þ, and if HðtÞ evolves slowly enough,
then the state at time t will remain in the nth instantaneous
eigenstates of HðtÞ up to a multiplicative phase factor
�nðtÞ. There has been a sudden regain of interest in the
AT for itself among physicists when in 1984, M.V. Berry
[2] pointed out that if it was applied to Hamiltonians,
whose parameters vary slowly in time and has been con-
fined to discrete spectrum, satisfying Hðt1Þ ¼ Hðt2Þ, it

could generate a geometrical phase (GP) factor e�
B
n . This

is a part from the familiar dynamical phase factor

e�ði=@Þ
R
EnðtÞdt associated with the time evolution of the

state being so transported with instantaneous eigenenergy
EnðtÞ, depending only on the curve C which has been
followed in the parameters space. And more recently, the
AT has renewed its importance in the context of quantum
control [3], for example, concerning adiabatic passage
between atomic energy levels, as well as for adiabatic
quantum computation [4].

There are several points of view for a discussion of the
quantum AT [5–7]; each one offers interesting insight. Let
us simply recall here that works [1,5,6] have led to a
formulation of the AT under the usual gap assumption
gnmðtÞ ¼ EnðtÞ � EmðtÞ, between level n and m. One
may then state that a general validity condition for adia-
batic behavior is well controlled as follows: the larger is the
quantity min0�t�T;mjgnmðtÞj, the smaller will be the tran-

sition probability.
Despite the existence of extensive literature on rigorous

proofs of estimates needed to justify the adiabatic approxi-
mation (AA) [1,6–8], doubts have been raised about its
validity [9] leading to confusion about the precise condi-
tion needed to use it [10]. In part, this is because some

papers emphasize different aspects, such as the asymptotic
expansion, the replacement of the requirement of nonde-
generate ground state by a spectral projection separated
from the rest of the spectrum, dependence of first order
estimates on the spectral gap, and even extensions to
systems without a gap. ATwithout gap conditions is known
to be true [7]; however, in general, no estimates on the error
terms are available. J. E. Avron and A. Elgart have shown
in Ref.[7] that the AT holds provided the spectral projec-
tion is of finite rank independently of any spectral consid-
erations, and that it is much more appropriate for the
systems without a gap condition and which have a discrete
origin. A similar result was proven in [11] for discrete
Hamiltonian when the set of eigenvalues crossings is of
measure zero in time. The limitation of these approaches is
that, in general, no estimate can be made on the rate at
which the adiabatic regime is attained [7].
In this Letter, (i) we present a straightforward, yet

rigorous, proof of the AT and AA for systems whose
Hamiltonian has a completely continuous spectrum (CS)
supposed nondegenerated for reasons of simplicity and
which checks a certain number of conditions which will
be given later on, (ii) we give a generalization of the GP,
(iii) we apply this theory to two physical examples.
In the case of CS we cannot numerate eigenvalues and

eigenfunctions, they are characterized by the value of the
physical quantity in the corresponding state. Although the
eigenfunctions ’ðk; tÞ of the operators with CS cannot be
normalized in the usual manner as is done for the functions
of discrete spectra, one can construct with the ’ðk; tÞ new
quantities—theWeyl’s eigendifferentials (wave packets)—
[12] which possess the properties of the eigenfunction of
discrete spectrum. The eigendifferentials are defined as

j�’ðk; tÞi ¼
Z kþ�k

k
j’ðk0; tÞidk0: (2)

They divide up the CS of the eigenvalues into finite but
sufficiently small discrete regions of size �k. The eigen-
differential (2) is a special wave packet which has only a
finite extension in space; hence, it vanishes at infinity and
therefore can be seen in analogy to bound states.
Furthermore, because the �’ have finite spatial extension,
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they can be normalized. Then in the limit �k! 0, a mean-
ingful normalization of the function ’ themselves follows:
the normalization on � functions.

For �k, a small connected range of values of the pa-
rameter k (this corresponds to a group of ‘‘neighboring’’
states), the operator

�Pðk; tÞ ¼
Z kþ�k

k
j’ðk0; tÞih’ðk0; tÞjdk0 (3)

represents the projector (the differential projection opera-
tor) onto those states contained in the interval and charac-
terized by the values of the parameter k within the range of
values �k. The action of �Pðk; tÞ on a wave function j ðtÞi
causes thus the projection of the wave function onto the
domain of states ’ðk; tÞ which is characterized by k values
within the �k interval. Before proceeding further, we give
the statement of the AT.

Let us call UTðsÞ the evolution operator where s is the
fictitious time and T is the time interval during which the
evolution of the system takes place and where the slowly
time-dependent Hamiltonian HðsÞ ¼ R

Eðk; sÞj’ðk; sÞi�
h’ðk; sÞjdk, 0 � s � 1, has a purely CS Eðk; sÞ.

If the following conditions are fulfilled (i) As mentioned
earlier, the CS is divided into discrete regions of size �k,
we must define a gap of energy for the CS; in other words,
the size �k is chosen so that jEðk; sÞ � Eðk0; sÞj � 1

T ,8 k0 =2 ½k; kþ �k�. (ii) We assume that the eigenvalues
are piecewise differentiable in the parameter s, and there is
no level crossing throughout the transition, i.e., Eðk0; sÞ �
Eðk00; sÞ=s 2 ½0; 1�; k0 2 ½k; kþ �k�; k” =2 ½k; k þ �k�.
(iii) The derivatives @

@s �Pðk; sÞ and @2

@s2
�Pðk; sÞ are well

defined and continuous in the interval 0 � s � 1.
Under these conditions, it is possible to prove the AT:
Theorem.—If the quantum system with time-dependent

Hamiltonian having a nondegenerate CS is initially in an
eigenstate j’ðk; 0Þi of Hð0Þ and if HðsÞ evolves slowly
enough, then the state of the system at any time s will
remain in the interval [k, kþ �k].

The AT can be formally written, at the first order, in
terms of the evolution operator as

8 k: lim
T!1UðsÞ�Pðk;0Þ¼�Pðk;sÞ lim

T!1UðsÞþO
�
1

T

�
: (4)

Notice that if, initially, the system is in the state j’ðk; 0Þi
so that Hð0Þj’ðk; 0Þi ¼ Eðk; 0Þj’ðk; 0Þi and expanding an
arbitrary state vector on the basis of the instantaneous
quasi-eigenfunction, then in the limit T ! 1 (4) implies
that the state

j ðsÞi ¼ UðsÞj’ðk; 0Þi ¼
Z kþ�k

k
Ck0 ðsÞj’ðk0; sÞidk0; (5)

belongs to the subspace generated by the states j’ðk; sÞi
pertaining to the interval [k, kþ �k].

Proof.—The demonstration that we present follows the
same approach developed in Ref. [12] for the discrete case,
and it consists of three steps: first, we change to the
evolution picture where the Hamiltonian has time-

dependent spectral projections; i.e., we go over to a time-
dependent reference frame following the axes which di-
agonalize HðsÞ. In this picture, the time evolution gen-
erator contains an immediately integrable contribution,
which we eliminate by going over to a second picture,
and finally, one shows that the remaining evolution opera-
tor differs from identity by terms Oð1=TÞ. We introduce a
unitary transformation UTðsÞ ¼ AðsÞ�TðsÞWðsÞ where
the unitary operator AðsÞ has the property �Pðk; sÞ ¼
AðsÞ�Pðk; 0ÞAþðsÞð8 k 2 RÞ and is completely defined
by the initial condition Að0Þ ¼ I and the differential equa-
tion i@@AðsÞ=@s ¼ KðsÞAðsÞ. The appropriate Hermitian
operator KðsÞ obeys the following commutation relation,

i@
@

@s
�Pðk; sÞ ¼ ½KðsÞ; �Pðk; sÞ�; (6)

and is determined without ambiguity if we add the addi-
tional condition h’ðk; tÞjKðtÞj’ðk0; tÞi ¼ 0, (8 k0 2
½k; kþ �k�). This gives

KðtÞ ¼ i@
Z
½1� �Pðk; tÞ�j _’ðk; tÞih’ðk; tÞjdk: (7)

The unitary transformation AþðsÞ carries the vectors and
operators of the Schrödinger ‘‘representation’’ over the
vectors and operators of a new ‘‘representation,’’ the ‘‘ro-
tating axis representation.’’ The observable HðsÞ is trans-
formed into HðAÞðsÞ ¼ AþðsÞHðsÞAðsÞ giving HðAÞðsÞ ¼R
Eðk; sÞj’ðk; 0Þih’ðk; 0Þjdk. Similarly, KðsÞ becomes

KðAÞðsÞ ¼ AþðsÞKðsÞAðsÞ. The operator �TðsÞ may be
written, with the initial condition �Tð0Þ ¼ I, as

�TðsÞ ¼
Z
e�ði=@ÞT�ðk;sÞj’ðk; 0Þih’ðk; 0Þjdk; (8)

where �ðk; sÞ ¼ R
s
0 Eðk; s0Þds0. The demonstration of (4) is

equivalent to showing that ½WðsÞ; �Pðk; 0Þ� ¼ 0. To prove
this result, we insert UTðsÞ in the evolution equation
i@@UTðsÞ=@s ¼ THðsÞUTðsÞ. This gives the equation sat-
isfied by the unitary operator W in its integral form

WðsÞ ¼ I þ i

@
FðsÞWðsÞ þ 1

@
2

Z s

0
Fðs0Þ �KðsÞWðs0Þds0; (9)

taking into account the equation i@@WðsÞ=@s ¼ �KðsÞWðsÞ
and FðsÞ¼R

s
0
�Kðs0Þds0 where �KðsÞ ¼ �þ

T ðsÞKðAÞðsÞ�TðsÞ.
We are going to show that FðsÞ is a sum of oscillating
functions whose frequencies increase indefinitely with T,
and consequently, the two last terms on the right-hand side
of the equation (9) tend to zero when T ! 1. Any operator
[and in particular FðsÞ] admits the following decomposi-
tion FðsÞ¼RR

Fðk;k0;sÞdkdk0 ¼R
s
0Pðk;0Þ �Kðs0ÞPðk0;0Þds0,

where Pðk; 0Þ ¼ I is the projector. Using (8), we obtain

Fðk; k0; sÞ ¼
Z s

0
exp

�
i

@
T½�ðk; s0Þ � �ðk0; s0Þ�

�

� KðAÞðk; k0; s0Þds0 (10)

where k0 =2 ½k; kþ �k�, because for k0 2 ½k; kþ �k�, the
Fðk; k0; sÞ vanish (see the condition stated above).

KðAÞðk; k0; s0Þ is a continuous function of s independent of
T. The phase of the exponential, however, does depend on
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T, and Fðk; k0; sÞ is therefore of the formR
s
0 e

iT�ðs0Þ=@fðs0Þds0, where f is a continuous function and

� is a continuous monotonic function. Such an integral is
known to go to zero when T ! 1. In conclusion, when
T ! 1 we have FðsÞ ¼ Oð1=TÞ. Since the two last terms
in Eq. (9) contain the factor FðsÞ, then for T ! 1 and from
UTðsÞ ¼ AðsÞ�TðsÞWðsÞ, we obtain

UTðsÞ ’ AðsÞ�TðsÞ
�
I þO

�
1

T

��
: (11)

Finally, (8) implies �TðsÞ�Pðk; 0Þ ¼ �Pðk; 0Þ�TðsÞ and
hence AðsÞ�TðsÞ�Pðk;0Þ¼AðsÞ�Pðk;0Þ�TðsÞ¼�Pðk;sÞ�
AðsÞ�TðsÞ. This concludes the proof of the AT (4). j

If T is sufficiently large, we can, in first approximation,
replace Uðt1; t0Þ by its asymptotic form:

Uðt1; t0Þ ¼ UTð1Þ ’ Að1Þ�Tð1Þ: (12)

This is called the AA. If the initial normalized state is
j’ðk0; 0Þi, then under this approximation,
Uðt1; t0Þj’ðk0; 0Þi � Að1Þ�Tð1Þj’ðk0; 0Þi. To determine

the validity of the AA for a given process, we can estimate
the error by computing the probability � ¼
h’ðk0; 0ÞjWþð1ÞQ0Wð1Þj’ðk0; 0Þi of finding the system at
time t1 in a state different from Að1Þ�Tð1Þj’ðk0; 0Þi, where
Q0 ¼ I � �Pðk0; 0Þ. Solving (9) iteratively and keeping
only the first order term, we find

� � 1

@
2

Z
k=2½k0;k0þ�k0�

jh’ðk0; 0ÞjFð1Þj’ðk; 0Þij2dk: (13)

Hence, the AA is applicable when �� 1. This condi-
tion is not easy to verify in practice because in general we
do not have enough explicit information about the operator
Fð1Þ. A different way of writing �� 1, more amenable to
interpretation, is to define a normalized time through the
variable transformation t ¼ t0 þ sT (0 � s � 1), and the
initial normalized state j’ðk0; t0Þi of Hðt0Þ with the eigen-
value Eðk0; t0Þ. Then, using (7) and (10) and performing
the change s! t in (13) yields

� � 1

@
2

Z
k=2½k0;k0þ�k0�

��������i@
Z t1

t0

e
ði=@Þ

R
t

t0
½Eðk0;t0Þ�Eðk;t0Þ�dt0 h’ðk0; tÞj _’ðk; tÞidt

��������
2

dk: (14)

The condition �� 1 is, therefore, in most cases, certainly
satisfied if

max
k=2½k0;k0þ�k0�

jh’ðk0;tÞj _’ðk;tÞij

� min
k=2½k0;k0þ�k0�

jEðk0;t0Þ�Eðk;t0Þj; 8 t2½t0; t1�; (15)

with max and min taken over all k =2 ½k0; k0 þ �k0�.
Condition (15) may be taken as a criterion for the validity
of the AA in the case of a CS. This estimate of the AA
could not be derived if using the Avron-Elgart’s approach
[7] as mentioned earlier.

The question arises: is there a GP for a CS? This case
was raised for the first time by R.G. Newton [13] who
looks at the S matrix as a GP factor. Newton introduced
what may be called the noninteraction picture to get the GP
factor in the CS. G. Ghosh [13] extends the AA to the
continuous spectra like an ansatz.

In order to derive the GP for the nondegenerate CS, we
insert (5) in the Schrödinger equation (1) and we multiply
the resulting equation by

Rþ1
�1h’ðk00; tÞjdk00, since k can

sweep all the possible values and the intervals �k should be
small (�k! 0) the equality between integrals implies the
equality between integrands, this yields

CkðtÞ ¼ �ðk0 � kÞ
� e

�
R
t

t0
½ði=@ÞEðk0;t0Þþ

Rþ1
�1 dk

00h’ðk00;t0Þjð@=@t0Þj’ðk0;t0Þi�dt0
;

(16)

hence, the adiabatic solution of the time-dependent
Schrödinger equation (1) is

j ðk; tÞi ¼ eði=@Þ½��Dðk;tÞþ�Gðk;tÞ�j’ðk; tÞi; (17)

where �Dðk; tÞ is the familiar dynamical phase factor, and

�Gðk; tÞ ¼
Z t

t0

Z þ1

�1
h’ðk0; t0Þji@ @

@t0
j’ðk; t0Þidt0dk0; (18)

is the generalized GP which embodies another central
result of this Letter. Note that all properties of the GP in
discrete case are fulfilled by the generalized GP �Gðk; tÞ
(18) for the continuous case.
We now want to analyze the nature of the phase (18)

through examples. Our first case is the Dirac equation in a
time-dependent electromagnetic field where the Hermitian
time-dependent Dirac Hamiltonian defined in a 4-
dimensional Hilbert space spanned by the two-dimensional
basis state j1i and j2i can be written

HDðtÞ ¼ mðtÞc2½j1ih1j � j2ih2j� þ c�3½p� fðtÞ�j1ih2j
þ c�3½p� f�ðtÞ�j2ih1j (19)

p is the momentum operator, the mass mðtÞ and fðtÞ are
periodic slow functions of time, �3 is the 2� 2 standard
Pauli matrix. At any time t, the instantaneous eigenstates
(normalized to � function) of the Hamiltonian (19) are

j’	ðz;k;tÞi¼
�

c�3gðk;tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½mðtÞc2
@!ðk;tÞ�2þjgðk;tÞj2c2p j1i

þ mðtÞc2
@!ðk;tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½mðtÞc2
@!ðk;tÞ�2þjgðk;tÞj2c2p j2i
�

�e
ði=@Þkzffiffiffiffiffiffiffiffiffi
2�@

p (20)

and correspond to the eigenvalues 	@!ðk; tÞ where

@!ðk; tÞ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðtÞc2 þ jgðk; tÞj2p

and gðk; tÞ ¼ fðtÞ � k.
Substituting (20) in Eq. (18) and using of the following

PRL 101, 150407 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

10 OCTOBER 2008

150407-3



representation of the adiabatic parameters ½RefðtÞ �
k�c ¼ @! sin� cos’, ImfðtÞc ¼ @! sin� sin’ and
mðtÞc2 ¼ @! cos�; !, �, and ’ are now chosen as time-
dependent adiabatic quantities, we find that the generalized
GP is nothing but the solid angle �Gðk;CÞ ¼ � @

2� sub-

tended by the circuit C when seen from (k, 0, 0) in [RefðtÞ,
ImfðtÞ, mðtÞc] space.

Our next example is the geometrical aspect of the S
matrix: A very general way of looking at the S matrix as
a GP factor has been implicitly provided by Newton [13],
where the expression for GP looks strikingly similar to the
equation of the wave operator in the interaction picture.
This leads Newton to conclude that the Smatrix appears in
geometric phase as an expression of the adiabatic switch-
ing on and off of the interaction. Here, we show explicitly
that, in the case of an elastic scattering, the generalized GP
(18) is nothing but the diagonal element of the S matrix.

The state vector j ðtÞi ¼ Uðt; t0Þj ðt0Þi of the given
physical system is assumed to satisfy the Schrödinger
equation (1), Uðt; t0Þ being the unitary evolution operator
associated to the Hamiltonian operator HðtÞ. In order to
solve Eq. (1) under the adiabatic assumption, we assume
that the Hamiltonian can be split into two parts HðtÞ ¼
H0 þ VðtÞ so that H0 represents the noninteracting parti-
cles Hamiltonian . In other words, H0 represents the free
Hamiltonian operator whose eigenstates in the CS are
defined as H0j’FðkÞi ¼ EðkÞj’FðkÞi. For the present, we
have primarily elastic scattering in mind, and we may think
of VðtÞ as the time-dependent potential of interaction. We
assume that VðtÞ varies slowly in time with VðtÞ � 0 for
t0 < t < t1.

In scattering problems, we are interested in calculating
transition amplitudes between states j’FðkÞi (F stands for
free evolution). The system initially in the state
j ð�1Þi ¼ j’Fðk0Þi evolves freely towards the interac-
tion region under the action of the free Hamiltonian H0.
Expansion of the adiabatic evolved state j ðtÞi (17) on the
basis of the instantaneous eigenstates j’FðkÞi of H0 leads
to the matrix elements of the evolution operator Uðt; t0Þ in
the basis fj’FðkÞig

h’FðkÞjUðt; t0Þj’Fðk0Þi
¼ eði=@Þ½��Dðk0;tÞþ�Gðk0;tÞ�h’FðkÞj’ðk0; tÞi: (21)

In the interaction picture ~Uðt; t0Þ ¼ e
i
@
ðt�t0ÞH0Uðt; t0Þ, the

corresponding matrix elements of ~U between the eigen-
states of the unperturbed Hamiltonian H0 satisfy

h’FðkÞj ~Uðt; t0Þj’Fðk0Þi
¼ e

ði=@Þ½��Dðk0;tÞþ
R
t

t0
EðkÞdt0þ�Gðk0;tÞ�h’FðkÞj’ðk0; tÞi: (22)

As expected, the initial (t � t0) and final (t � t1) eigen-
states of the free Hamiltonian H0 are identical, i.e.,
j’Fðk0; t � t1Þi ¼ j’FðkÞi. By pushing the initial time
into the distant past, i.e., t0 ! �1, similarly t! 1 sig-
nals that the scattering process is complete, we obtain the
scattering matrix or S matrix

h’FðkÞjSj’Fðk0Þi¼�ðk�k0Þexp
�
i

@
�Gðk0;þ1Þ

�
: (23)

On the basis of this comparison, we may conclude that
after the Hamiltonian completes an adiabatic circuit from
H0 via HðtÞ back to H0, the state which initially was given
by j’FðkÞi has gone over into a new state that differs from
it by a multiplicative factor Sk which is the eigenvalue of
the unitary Smatrix; it is related to the generalized GP (18)
by Sk ¼ exp½i

@
�Gðk;þ1Þ�.
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