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Smectic orders on curved substrates can be described by differential forms of rank one (1-forms), whose

geometric meaning is the differential of the local phase field of density modulation. The exterior derivative

of the 1-form is the local dislocation density. Elastic deformations are described by superposition of exact

differential forms. Applying this formalism to study smectic order on a torus as well as on a sphere, we

find that both systems exhibit many topologically distinct low energy states that can be characterized by

two integer topological charges. The total number of low energy states scales as the square root of the

substrate area. For a smectic on a sphere, we also explore the motion of disclinations as possible low

energy excitations, as well as its topological implications.
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The problem of smectic order on a curved substrate
naturally arises in a variety of contexts, such as block
copolymer films coated on a curved substrate [1–4], col-
loidal particles immersed in a smectic liquid crystal [5]
with a strong tangential boundary condition, smectic poly-
mer vesicles, as well as Turing patterns on a sphere [6].
Last but not least, a flexible charged polymer adsorbed
onto an oppositely charged curved surface [7] may also
form an equal-distance layer pattern on the surface.

The main purpose of this Letter is to study the low
energy smectic states on curved substrates with a minimal
number of defects, which are experimentally most relevant
at low temperature. We shall find that smectic order both
on a sphere and on a torus exhibit many topologically
distinct, nearly degenerate, and minimally defected states.
These states can be classified by two integer topological
charges, which are related to substrate topology as well as
to a disclination pattern. The total number of these states is

proportional to
ffiffiffiffi
A

p
=‘0, where A is the substrate area and ‘0

the preferred layer spacing. Their energy differences scale
sublinearly with the system size. For smectic on a sphere,
by exchanging defects pairs in an appropriate manner, two
integer charges can be systematically changed. Interest-
ingly, the corresponding process realizes the Euclidean
algorithm for finding the greatest common divisor of two
integers. Our results are complementary to a recent work
by Santangelo et al. [1], which addresses the energetic
interplay between smectic order and substrate curvature.
A more detailed version of our analysis is presented else-
where [8].

The local phases of density modulation of a smectic
order at two nearby points x and xþ dx are related by
�ðxþ �xÞ � �ðxÞ þ c �ðxÞdx�. While the phase field �
is generically not globally well defined, its differential
c ðxÞ ¼ c �dx

�, called a 1-form in modern differential
geometry [9], nevertheless still is. A simple geometric
reasoning shows that the norm of c is proportional to the

reciprocal of layer spacing ‘: jc j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��c �c �

q
¼2�‘�1.

The nonlinear strain wðxÞ ¼ 1
2 ð

‘2
0

4�2 jc j2 � 1Þ measures the

dilation or compression of smectic layers. This strain is
identical to the one used in Ref. [1] and reduces to the well-
known nonlinear strain for smectic order in flat space
[11,12]. The total free energy of the system is the sum of
the strain energy density Bw2=2 and the Frank free energy,
appropriately generalized to curved space [13].
The integral of c along a loop � is the net phase change

�� as one walks around �; i.e., the dislocation charges,
multiplied by 2�, enclosed by the loop. Using the Stoke’s
theorem this can in turn be related to the 2D integral over
the region D enclosed by �:

�� ¼ 2�N� ¼
I
�
c ¼

Z
D
dc ; (1)

where the two form dc ¼ ð@xc y � @yc xÞdx ^ dy is the

exterior differential of c . dc therefore must be the dis-
location density. Hence a dislocation-free smectic state is
described by a 1-form satisfying dc ¼ 0. Such a 1-form is
called closed. By contrast, a 1-form c ¼ d� that is the
differential of a function � is called exact.
An exact form is closed. If the phase field � is globally

defined, we have c ¼ d�, and dc ¼ d2� ¼ ð@1@2 �
@2@1Þ�dx1 ^ dx2 � 0; that is, the dislocation density van-
ishes everywhere. This obvious result is called Poincaré’s
lemma. Its converse holds in flat space: If dc ¼ 0 every-
where, the phase field� is globally defined: c ¼ d�, and
the integral equation (1) along arbitrary loop always
vanishes.
The converse of Poincaré’s lemmamay fail in space with

different topology [14]. De Rham’s theorem of cohomol-
ogy [15] identifies the number of independent closed-but-
not-exact forms with that of nonretractable loops on the
manifold. A torus, for example, has two nonretractable
loops, as shown in Fig. 1(a). The most general closed
1-form on a torus is given by

c N�;N�
¼ N�d�þ N�d�þ d�ð�;�Þ: (2)

PRL 101, 147801 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

3 OCTOBER 2008

0031-9007=08=101(14)=147801(4) 147801-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.147801


The integral of c along loops �� and �� give, respectively,

2�N� and 2�N�. Equation (2) is exact only if both N� and

N� vanish. In order for Eq. (2) to describe a defect-free

smectic state on a torus, both N� and N� must be integers.

The exact form d�ð�;�Þ in Eq. (2) describes an elastic
deformation of smectic layers relative to the state with
d� ¼ 0. It can be ignored for a sufficiently thin torus.

We define two states to be topologically equivalent if
they can be brought into each other by continuous defor-
mation that does not break any smectic layer. The topo-
logical properties of a defect-free smectic state on a curved
substrate are therefore characterized by a closed-but-not-
exact differential form. Similarly, any excitation or distor-
tion of the smectic pattern that cannot be relaxed away by
elastic deformation is a topological defects. According to
this definition, therefore topological defects should be
identified as the source of internal strain, a concept thor-
oughly explored in the continuous theory of defects in
crystals [16]. We note, however, that this definition of
topological equivalence is more refined than the one used
in the homotopy theory topological defects [17,18].
Consequently, the topological charges discussed in this
work may not be truly topological invariants according to
the homotopy theory. A more detailed discussion of this
issue can be found in [8].

Toroidal smectic states with different charges (N� and
N�) are clearly topologically distinct. Two integers (N�

and N�) share essential similarity with usual dislocation

charges but encode global properties of defect-free smectic
states on a torus. Hence they shall be called global dis-
location charges [19]. Each defect-free smectic state can
therefore be represented as a point in the half lattice of
integers (N� and N�) [20], as shown in Fig. 1(b).

The nonlinear strain associated with states Eq. (2) on a
thin torus (with d� set to zero) is given by

w ¼ ‘20N
2
�

ð2�R�Þ2
þ ‘20N

2
�

ð2�R�Þ2
� 1: (3)

As shown in Fig. 1(b), the equation w ¼ 0 traces out an

ellipse in the ðN�;N�Þ plane. States satisfying jwj �
‘0=

ffiffiffiffi
A

p
[shaded in Fig. 1(b)] have the total strain energy

bounded by B‘20=2, which is independent of the system

size. A simple calculation [8] also shows that the total
Frank free energy scales sublinearly with the system size.
Therefore all of these states are approximately degenerate
for a large system. The total number of these low energy
states is given by the area of the shaded region in Fig. 1(b)
and scales as the square root of the substrate area:

N
�
FB � 1

2
B‘20

�
¼ 2�

ffiffiffiffi
A

p
‘0

; (4)

We now turn to smectic order on a sphere. According to
the Gauss-Bonnet-Poincaré theorem, the total disclination
charge of a smectic order on a sphere must be two. Let us
write c ¼ jc jn̂, where n̂ ¼ n̂�dx

� is the unit 1-form
describing the smectic layer normal, while jc j is the
norm of c . Taking the exterior differential of c , as well
as using the Leibniz rule, we find dc ¼ ðdjc jÞ ^ n̂þ
jc jdn̂. Note that dn̂ ¼ ð@1n̂2 � @2n̂1Þdx1 ^ dx2 is a 2-
form describing bending deformation of the layer normal.
Hence, if there is no dislocation (dc ¼ 0) and the layer
spacing is constant (djc j ¼ 0), the bending deformation of
the director field is strictly forbidden (dn̂ ¼ 0). This im-
plies that the bending constantK3 is effectively infinity in a
dislocation-free smectic [21].
A spherical nematic in the limit of infinite bending

rigidity is characterized by a one-parameter family of
degenerate ground states, where four þ1=2 disclinations
sit on a great circle and form a rectangle with an arbitrary
aspect ratio [22]. For a given bending-free nematic state,
we can start from disclination cores and grow, layer by
layer, a dislocation-free smectic pattern with equal layer
spacing. We will, however, have to fine-tune the layer
spacing ‘ so that the smectic pattern can be fit onto the
sphere with given radius R. This fine-tuning results in a
small strain of order of ‘0=R and a total strain energy FB �
B‘20, which does not scale with the system size. Since the

Frank free energy of all of these states is the same by
construction, the total free energy is approximately
degenerate.
Several numerical studies of spherical smectic orders

formed by diblock copolymer films confined on a sphere
have been reported recently [2–4]. By slowly annealing the
system, three classes of low energy smectic states were
found [2]: latitudinal states [23], where all layers are
circles of constant latitude, spiral states, where all smectic
layers are spirals around the two poles, and quasibaseball
states, where fourþ1=2 disclinations are well separated on
a great circle. All of these states are dislocation-free. There
may be, however, at most one layer termination at each
disclination core.
Consider a quasibaseball state, shown in Fig. 2(a), with

four disclinations sitting on the equator. We stereographi-
cally project the pattern from the south pole to the complex

FIG. 1 (color online). (A) Two cycles on a torus. (B) Smectic
states on a torus with distinct global dislocation charges are
shown as grid points in the upper-half ðN�;N�Þ plane. The curve
(ellipse) is the loci of vanishing strain w ¼ 0, as determined by
Eq. (3). States in the shaded region have low strain energy and
are approximately degenerate.
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plane, such that the equator is mapped into the unit circle.
The image smectic pattern is shown in Fig. 2(b), with four
defects located at ða; b; c; dÞ ¼ ð1; ei�;�1; e�i�Þ, respec-
tively. The segment ab of the unit circle intersects N1=2
smectic layers. (A layer terminated at disclination a or b is
counted as a 1=2 intersection.) Likewise, the segment bc of
the unit circle intersects N2=2 smectic layers. Note that by
definition bothN1 andN2 are non-negative. Without loss of
generality we choose N1 � N2. Two integer charges (N1

and N2) completely determine the global properties of a
quasibaseball state. Latitudinal states are special cases of
quasibaseball states with N1 ¼ 0 [24], while spiral states
correspond to the regime N1 � N2.

It is clear from Fig. 2(a) that all smectic layers intersect
the equator vertically. The arc lengths sab and sbc are
therefore given by

sab ¼ R� ¼ N1‘; sbc ¼ Rð���Þ ¼ N2‘;

from which we find

N1

N2

¼ �

���
; ‘ ¼ �R

N1 þ N2

; (5)

where ‘ � ‘0 is the layer spacing. The equilibrium value of
the angle � is therefore completely determined by the two
charges N1 and N2. Large fluctuations of � necessarily
induce a significant change of layer spacing and therefore
is energetically penalized. More importantly, Eq. (5) also
shows that, in all low energy states, N1 þ N2 is completely
determined by the sphere radius R and the layer spacing ‘.
Since N1 can take an arbitrary integer value from 0 to
�R=‘, the total number of low energy smectic states on a
sphere is approximately given by

N ðFB � B‘20Þ ¼
�R

‘0
þ 1 �

ffiffiffiffiffiffiffi
�A

p
‘0

; (6)

i.e., also scales as the square root of the sphere area.
To obtain an analytic description for quasibaseball

states, we invoke the Hodge decomposition theorem [15]
of differential forms on a compact manifold. The closed
1-form c can be expressed as the sum of the real part of an
analytic form c c and an exact form d�:

c ðx; yÞ ¼ Rec cðzÞ þ d�ðx; yÞ; (7)

where c cðzÞ ¼ fðzÞdz, with fðzÞ ¼ fðxþ iyÞ a meromor-
phic function, while �ðx; yÞ is a smooth (but not analytic)
function on the z plane. The topological properties of the
smectic order on a sphere is completely encoded in fðzÞdz.
The exact form d� describes elastic deformation and
should be chosen to minimize the total free energy.
The complex meromorphic form c c that describes a

spherical smectic with four disclinations at a, b, c, and d
can be shown to be [8]

c c ¼ Ae�i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz� aÞðz� bÞðz� cÞðz� dÞp dz: (8)

As shown in Fig. 2(b), let us construct two loops �1 and �2

that enclose the segments ab and bc, respectively.
Integration of c along the loops �1 and �2 yield two
topological charges N1 and N2 that we defined above:

2�Nk ¼
I
�k

c ¼ Re
I
�k

c c; k ¼ 1; 2: (9)

Solving Eq. (9) for A and �, we obtain

Ae�i� ¼
�

�N2

Kðcos�2Þ
� i

�N1

Kðsin�2Þ
�
ei�=2; (10)

where Kð�Þ is complete elliptic integral of the first kind.
Equations (8) and (10) completely determine the meromor-
phic form c c for given chargesN1 andN2. We note that the
integral of c c Eq. (8) defines the (multiple-valued) inverse
function of a doubly periodic elliptic function. Two integer
charges N1 and N2 are the real parts of two periods of this
elliptic function [8].
Spiral states are especially interesting because of their

closely bound defects pairs. As illustrated in Fig. 3, con-
sider a spiral state with charges (N1 ¼ 2; N2), align the
sphere so that one pair of defects a and b sit near the north
pole. Let us fix the south pole and elastically twist the
whole sphere, together with all smectic layers, around the z
axis by an angle �, so that the defects pair a and b at the
north pole exchange their positions. The branch cut [shown
blue in Fig. 3(a)], which connects a and d (invisible in
Fig. 3) before the twist operation, after the twist operation
connects b and d instead, shown red in Fig. 3(b). The
corresponding integer charge associated with this branch
cut is N2 before the twist and becomes N2 þ N1 after the
twist. Hence a counterclockwise twist of the defects pair a
and b by angle � leads to the following transformation of

FIG. 2 (color online). (A) A quasibaseball state, with four
þ1=2 disclinations sitting on the equator. Each disclination
core has one layer termination. Only two disclinations are visible
here. (B) The same state stereographically projected onto the
complex plane. The equator is mapped to the unit circle. The red
contour encloses defects a and b and intersects 12 smectic layers
in total. The blue contour encloses defects b and c and intersects
8 layers in total. Hence this quasibaseball state is labeled by two
integer charges (N1 ¼ 12 and N2 ¼ 8).
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the topological charges:

ðN1; N2Þ ! ðN1; N2 þ N1Þ: (11)

Obviously clockwise twist of the pair ða; bÞ leads to a
different transformation:

ðN1; N2Þ ! ðN1; N2 � N1Þ: (12)

Therefore, if defects are allowed to move, states (N1 and
N2 � N1) are topologically identical to the state ðN1; N2Þ.
As long as N1 � N2, this twist manipulation induces only
a small change in layer spacing and therefore costs little
strain energy. The twist of closely bound defects pair is
therefore a low energy excitation in spiral states.

It is important to note that, even if N1 and N2 are
comparable, a twist of defects pair is still topologically
possible but costs large strain energy. The two charges (N1

and N2) of a quasibaseball states are therefore stabilized by
both topological and energetic barriers. Furthermore, de-
fects twisting can be successively applied. Starting with a
state with N1 � N2, we twist an appropriate defects pair so
as to obtain new charges (N0

1 ¼ N1 and N
0
2 ¼ N2 � N1). If

N0
1 � N0

2 still holds, we simply repeat the same twist
operation. If, after the twist, we find N0

1 � N0
2, we twist a

different pair so that we have a new state ðN0
1; N

0
2 � N0

1Þ. In
every step, one of two integers (N1 or N2) is reduced. This
process therefore must end after finite steps, where one of
the two integer charges vanishes. The final state is there-
fore a latitudinal state. More interestingly, this process of
charge reduction is precisely the Euclidean algorithm for
finding the greatest common divisor gcdðN1; N2Þ between
two integers (N1 and N2). Therefore the nonvanishing
charge of the final state must be gcdðN1; N2Þ. Hence, if
disclinations are allowed to move, an arbitrary low energy
smectic state on a sphere is topologically identical to a
certain latitudinal state, with only one nonzero integer
topological charge.
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FIG. 3 (color online). Starting from a state ðN1; N2Þ with N1 ¼
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