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We study first-order quantum phase transitions in mean-field spin glasses. We solve the quantum

random energy model using elementary methods and show that at the transition the eigenstate suddenly

projects onto the unperturbed ground state and that the gap between the lowest states is exponentially

small in the system size. We argue that this is a generic feature of all ‘‘random first-order’’ models, which

includes benchmarks such as random satisfiability. We introduce a two-time instanton to calculate this gap

in general, and discuss the consequences for quantum annealing.
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Solving hard combinatorial problems by temperature
annealing is a classic strategy in computer science [1]. A
major question is whether annealing a quantum mechani-
cal kinetic term [2,3] or a transverse magnetic field � can
be an efficient strategy. Experimentally this question was
studied in an Ising spin glass (SG) [4], an archetype for
difficult systems in physics. A quantum first-order transi-
tion was observed at very low temperatures, as had been
previously found in model systems [5,6]. Here we address
several open questions: What is the underlying behavior of
the wave functions at the quantum SG transition? Is quan-
tum annealing efficient in solving these difficult optimiza-
tion problems? We thus first solve a simple quantum
version of a SG model, the random energy model (REM)
[7]. Despite its simplicity, it reproduces many properties of
mean-field glasses [7] and allows one to model the behav-
ior of a wide variety of phenomena such as the ‘‘ideal’’
glass transition [8] and random heteropolymer folding [9].
The REM also captures aspects of the phenomenology of
random satisfiability [10] and is closely related to the
random code ensemble in coding theory [11]. All these
problems belong to the so-called ‘‘random first-order’’
(RFO), or ‘‘one-step replica symmetry breaking,’’ class.
To show that in all of these systems the minimal spectral
gap � between the ground and first excited states is ex-
ponentially small in size, we set up an instanton calculation
that allows one to compute the gap. The minimal spectral
gap in turn yields a lower bound � / ��2 [2] on the time
needed to find the ground state.

Quantum SGs have been investigated over the past
30 years [12] using an elaborate mathematical formalism
combining the replica [13] and the Suzuki-Trotter methods
[5,14] in order to introduce disorder and quantum mechan-
ics. The quantum transition has been found to be first order
at low temperature for all RFO models [5,6,14]. We show
here first that the quantum version of the random energy
model (QREM) can be solved analytically using only basic
tools of perturbation theory, a derivation whose simplicity
provides a detailed understanding of the quantum glass

transition. The minimal gap � is found to be exponentially
small inN. Next, we show that this result holds for all RFO
models, making quantum annealing an exponentially slow
algorithm in those cases.
QREMmodel.—ConsiderN Pauli spins� in a transverse

field � with the Hamiltonian:

H ðf�gÞ ¼ Eðf�zgÞ þ �
XN
i¼1

�x
i ¼ H 0 þ �V;

where Eðf�zgÞ is a function that takes 2N different values
for the 2N configurations of the N spins. These values are
taken randomly from a Gaussian distribution of zero mean
and variance N=2, as in the REM [7]. A concrete imple-
mentation is Eðf�zgÞ ¼ limp!1

P
i1;...;ip

Ji1;...;ip�
z
i1
� � ��z

ip
,

where the Ji1;...;ip are random Gaussian variables. In the

�z representation H is a 2N � 2N matrix whose diagonal
entries are the 2N classical energies. The matrix elements

ofH ��
0 ¼ EREM

� andH ���
0 ¼ 0, while V�� ¼ 1 if � and

� are two configurations that differ by a single spin flip and
zero otherwise. H is sparse and can be studied numeri-
cally rather efficiently even for large matrix sizes using
Arnoldi and Ritz methods [15].
Two easy limits.—The model is trivially solved in the

limit � ! 0 and � ! 1. For � ¼ 0, we recover the clas-
sical REM with N Ising spins and 2N configurations, each
corresponding to an energy level E� [7]: Call nðEÞ the
number of energy levels belonging to the interval (E; Eþ
dE); its average over all realizations is easily computed:

nðEÞ ¼ 2NPðEÞ / eNðln2�E2=N2Þ ¼ eNsðE=NÞ, where sðeÞ ¼
ln2� e2 (with e ¼ E=N). There is therefore a critical

energy density e0 ¼ � ffiffiffiffiffiffiffi
ln2

p
such that, if e < e0, then

with high probability there are no configurations, while if
e > e0 the entropy density is finite. A transition between

these two regimes arises at 1
Tc
¼ dsðeÞ

de je0 ¼ 2
ffiffiffiffiffiffiffi
ln2

p
and the

thermodynamic behavior follows: (i) For T < Tc, fREM ¼
� ffiffiffiffiffiffiffi

ln2
p

and the system is frozen in its lowest energy states.
Only a finite number of levels (and only the ground state at
T ¼ 0) contribute to the partition sum. The energy gap
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between them is finite. (ii) For T > Tc, fREM ¼ � 1
4T �

T ln2; exponentially many configurations contribute to the
partition sum.

In the opposite case of very large values of �, the REM
contribution to the energy can be neglected. In the�x basis,
we find N independent classical spins in a field �; the
entropy density is just given by the log of a binomial
distribution between ��N and þ�N and the free-energy
density is fpara ¼ �T ln2� T lnðcosh�=TÞ.

Perturbation theory.—What happens between these two
extreme cases? The perhaps surprising answer for the
thermodynamics is nothing. At low value of �, the free-
energy density is that of the classical REM, while for larger
values it jumps to the quantum paramagnetic (QP) value
fQP; a first-order transition separates the two different

behaviors at the value � such that fREM ¼ fQP (see center
panel of Fig. 1). This can be easily understood using
Rayleigh-Schrödinger perturbation theory [16,17].
Consider the set of eigenvalues Ek and eigenvectors jki
of the unperturbed REM, when � ¼ 0. The series for a
given perturbed eigenvalue Eið�Þ reads

Eið�Þ¼EiþhijX1
n¼0

�V

�
Q

Ei�H 0

ðEi�Eið�Þþ�VÞ
�
njii;

where the projector Q ¼ P
k�ijkihkj so that

Eið�Þ ¼ Ei þ �Vii þ
X
k�i

�2VikVki

Ei � Ek

þ � � � : (1)

Since Vij � 0 if and only if i and j are two configurations

that differ by a single spin flip, odd order terms do not
contribute in Eq. (1) as one requires an even number of
flips to come back to the initial configuration in the sums.
Noting that

P
k�njVnkj2 reduces to a sum over the N levels

connected to Ei by a single spin flip, one obtains, starting

from an extensive eigenvalue [Ei ¼ OðNÞ], that
X
k�i

V2
ik

Ei � Ek

¼ 1

Ei

XN
k¼1

�
1þ Ek

Ei

þ � � �
�
¼ N

Ei

þO

�
1

N

�
;

where we have used that the Ek are random and typically of

order
ffiffiffiffi
N

p
. Higher nth orders are computed in the same

spirit and are found to be OðNn=2�1Þ. Therefore, to all
(finite) orders, we have

Eið�Þ ¼ Ei þ N�2

Ei

þO

�
1

N

�
: (2)

This analytic result compares well with a numerical evalu-
ation of the eigenvalues (left panel of Fig. 1). Note that the
energy density of all extensive levels is independent of � to
leading order in N as are hence sðeÞ and fðTÞ.
The expansion can also be performed using �V as a

starting point and H 0 as a perturbation. Consider the
ground state with eigenvalue E0ð�Þ and the unperturbed
ground state with EV

0 ð�Þ ¼ ��N. In the base correspond-

ing to the eigenvalues of �V, we find

E0ð�Þ¼EV
0 ð�Þþh0 jH 0 j0iþ

X
k�0

jhk jH 0 j0ij2
EV
0 ð�Þ�EV

k ð�Þ
þ��� :

The first-order term gives
P

2N

�¼1 E
REM
� jv�j2. Since the en-

ergies of the REM are random and uncorrelated with v�

this sums to Oð ffiffiffiffi
N

p
2�N=2Þ. For the second-order term, one

finds

X
k�0

jhk j H 0 j 0ij2
EV
0 ð�Þ � EV

k ð�Þ
¼ 1

EV
0 ð�Þ

X
k�0

jhk j H 0 j 0ij2
1� EV

k ð�Þ=EV
0 ð�Þ

� 1

EV
0 ð�Þ

h0 j H 2
0 j 0i

¼ N

2EV
0 ð�Þ

þ oð1Þ: (3)
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FIG. 1 (color online). Left: Evolution of lowest energy levels for a single realization of the QREM with N ¼ 20 spins (dots)
compared with analytical predictions (lines). Inset: Evolution of the ensemble averaged minimal gap at the transition. Center: Phase
diagram of the QREM in temperature T and transverse field �. At T ¼ 0 the quantum transition arises at �c ¼

ffiffiffiffiffiffiffi
ln2

p
while the classical

glass transition for � ¼ 0 is at Tc ¼
ffiffiffiffiffiffiffi
ln2

p
=2. Right: A multi-instanton configuration for the two-times overlap qt;t0 and the two-time

Lagrange multipliers ~qt;t0 . Far from the jump times, the functions qt;t0 and ~qt;t0 take the same form as those computed at those times for

the glass phase [the regions ð1; 1Þ], for the quantum paramagnet [in the regions ð2; 2Þ], and are zero in the mixed regions ð1; 2Þ-ð2; 1Þ. In
the large p limit the problem can be solved completely using the so-called ‘‘static approximation’’ [5,14] within the ð1; 1Þ regions, and,
in addition, the fact that ~qd

t;t0 and ~qt;t0 become either infinity or zero, with sharp interfaces.
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Subsequent terms are treated similarly and give vanishing
corrections so that E0ð�Þ ¼ �N�� 1

2� þ oð1Þ. Again this

derivation holds for other states with extensive energies
EV
i ð�Þ, the only tricky point being the degeneracy of the

eigenvalues [18], and for these excited eigenstates, the
perturbation starting from the large � phase yields Eið�Þ ¼
EV
i ð�Þ � 1

2� þ oð1Þ. Again, to leading order in N, energy,

entropy, and free-energy densities are not modified by the
perturbation.

Quantum transition.—This derivation sheds new light on
the physics of the transition: The wave function in the QP
phase is delocalized over the classical configurations in the
�z base. The first-order transition amounts to a sudden
localization of the wave function into an exponential num-
ber of classical states for T > Tc and a finite number of
frozen states for T < Tc (and to the ground state at T ¼ 0).

Focusing on T ¼ 0 and on the avoided level crossing
near the transition, we compute the gap �ðNÞ as follows:
Consider a value of � such that for that sample the SG
ground state and the quantum paramagnet are degenerate.
We lift the degeneracy by diagonalizing H in the corre-
sponding two-dimensional space

H j�i¼ ½E0jSGihSGj��NjQPihQPj�j�i¼�j�i: (4)

The gap is given by the difference of the eigenvalues, so
that

�ðN;�Þ2 ¼ ðN�� E0Þ2 � 4½�E0N�þ E0N�hSGjQPi2�
and at the transition when � ¼ � ffiffiffiffiffiffiffi

ln2
p ¼ E0=N, it yields

�minðNÞ ¼ 2jE0j2�N=2; (5)

where we have used the fact that hSGjQPi ¼ 2�N=2. This
agrees well with numerics, even for small values of N (see
left panel of Fig. 1). Similar results are known for number
partitioning [19].

Generic case and instanton.—A first-order quantum
transition being a generic feature in all RFO models, we
expect these arguments to hold qualitatively in all such
models, so that the gap closes exponentially with N, much
in the same way that a thermal mean-field first-order
transition implies an exponential activation time and meta-
stability. Indeed, quantum annealing works by tunneling
between quantum states, but in first-order transitions these
states are usually ‘‘far’’ from each other. In order to quan-
titatively compute the gap, perturbation theory is of no use
in the generic case and one has to resort to instantonic
computations [20]. We now discuss how this can be done in
disordered systems using the replica method. To introduce
the instanton, we use the expansion of the evolution op-
erator and, denoting " ¼ hQPjHjSGi, write

Tr e��H ¼ X
k even

1

k!

Z
dt1 . . . dtke

�½tSGtot HSGþtQPtot HQP�"k; (6)

where the system jumps at t1; . . . ; tk between the states

jSGi and jQPi, tSGtot and tQPtot is the total time spent in each.

Following the standard strategy [5,6,14], the trace is com-
puted via the Suzuki-Trotter and the replica trick. One
obtains an effective replicated free energy as a function
of the overlaps q��

t;t0 between the replicas at two (imaginary)

times and some corresponding Lagrange multipliers ~q��
t;t0 ,

for which a particular ansatz must be proposed [5,6].
Equation (6) tells us that if we find a solution that inter-
polates between jSGi and jQPi by jumping k times

t1; . . . ; tk and yields ln Tr½e��H� � �tSGtotFSG � tQPtotFQP �
kG, then by simple comparison ln"�G leads to �� eG:
An extensive value ofG implies an exponentially small gap
and the value of G is thus proportional to the free-energy
cost of an interface in a two-time plane. For disordered
systems, the computation can be performed by using a
special two-time instanton ansatz as shown in the right
panel of Fig. 1. We now refer to the presentation and
notation of [14]. We calculate the free energy per spin f ¼
F=N of the replicated systems in the N ! 1 limit by the
saddle point method. In the one-step replica symmetry
ansatz, we divide replicas � in n=m sets of size m: we
denote the parameters q

��
tt0 as (i) qd

tt0 if � ¼ � [21], (ii) qtt0

if � � � but belong to the same block and zero otherwise.
This corresponds to the SG and the QP that have been
widely studied [5,6,14]:

��f ¼
Z

dtdt0
�
��2J2

4
ð1�mÞqp

tt0 þ
ð1�mÞ

2
~qtt0qtt0

þ �2J2

4
½qd

tt0 �p � ~qd
tt0q

d
tt0

�
�W0: (7)

An expression for W0 is given below. We consider a
solution corresponding to the low-� phase in the interval
ð0; t1Þ, ðt2; t3Þ that jumps to the high-� phase in the inter-
vals ðt1; t2Þ, ðt4; t5Þ, and so on.
As a proof of principle, let us rederive the large-p case.

The saddle point equations imply that for large p either
ðqtt0 ; qdtt0 ; ~qtt0 ; ~qdtt0 Þ ¼ ð1; 1;1;1Þ or ðqtt0 ; qdtt0 ; ~qtt0 ; ~qdtt0 Þ ¼ð<1; <1; 0; 0Þ. This implies that the form of the instanton
configuration of ~qd

tt0 and ~qtt0 is the same as the one of qtt0

and qd
tt0 but with the values jumping from 0 to 1. In

addition we make the ‘‘static approximation’’ that assumes
that inside each time interval the parameters qd and ~qd are
constant. We conclude that we can write

2~qd
t0t0 � ~qt0t0 ¼ rdt r

d
t0 ; ~qt0t0 ¼ rtrt0 ; (8)

where rt and rdt are large in the time intervals when the
system is in the SG state, and drop to zero when it is not.
(The solutions in the literature correspond to a time-
independent value of r: large for the glass and small for
the QP phase, respectively). Because qd

t0t0 ; qt0t0 are either

zero or one, we have

Z
dtdt0qtt0 ~qtt0 �

Z
dtdt0~qtt0 ¼ I2

2
Z

dtdt0~qd
tt0q

d
tt0 ¼ 2

Z
dtdt0~qd

tt0 ¼ I2d þ I2; (9)
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with the definitions I � R
dtrðtÞ and Id �

R
dtrdðtÞ. We

further decouple the replicas in the single-spin term in the
usual way [5]:

W0¼ lnTrexpð�HeffÞ

¼� 1

m
ln

�Z
Dz2

�Z
Dz3Tr

�
T e

R
dt0ðAðt0Þ�zþ���xÞ	�m�;

(10)

where T denotes time order (a necessity here because of
the time dependence in the exponent), and AðtÞ � ðz3rdt þ
z2rtÞ. At low temperatures, the ‘‘field’’ in the x direction
�� is strong, while the field in the z direction jAðtÞj is
either zero or jAðtÞj � ��. The single quantum spin then
switches from being completely polarized along jzi and
along jxi, in the periods in which A � 0 and A ¼ 0,
respectively. The trace in (10) can then be calculated by
switching the single-spin basis from jxi to jzi. Denoting
tSG ¼ �� the time when qt ¼ qdt ¼ 1, and tQP ¼
ð1��Þ� the rest, the action becomes

� �f ¼ �2

�
��2J2

4
ð1�mÞ þ �2J2

4

�
� 1

2
I2d �

m

2
I2Wz

þ ð1��Þ��þ ðnumber of jumpsÞ � lnjhxjzij;
(11)

where the terms jhxjzij come from a change of basis, and

Wz ¼ � 1

m
ln

�Z
Dz2

�Z
Dz3e

jz2Iþz3Idj
�
m
�
:

This can be evaluated by the saddle point [5,14], a short
calculation yields Wz � 1

2 I
2
d þ m

2 I
2 þ ln2. Taking a further

saddle point with respect to m gives m ¼ 2
ffiffi
2

p
��J and thus

� �f ¼ �
ffiffiffiffiffiffiffi
ln2

p �J

2
þ ð1��Þ��þ k lnjhxjzij: (12)

This is exactly the contribution to Tr½e��H� of the process
with k jumps spending a fraction � in the glass state and
(1��) in the paramagnetic state. We finally have G ¼
N lnjhxjzij ¼ �N lnð2Þ=2 and we recover Eq. (5).

In a generic problem with a first-order transition, one has
to extremize the free energy (7) and from there compute
the gap as a free-energy cost of an interface that is gen-
erally nonzero.

Conclusion.—Starting from the quantum random energy
model, we have discussed the quantum glass transition.
The gap is exponentially small at the transition. We in-
troduce a method that allows us to show that this result
holds for all models of the random first-order kind; pre-
sumably including benchmark problems such as random
satisfiability. Our results imply that quantum annealing is
exponentially slow at finding the ground state of these
random NP-hard (nondeterministic-polynomial-time-
hard) problems. Although this seems to contradict recent

numerical results [22], the problems considered there were
not randomly chosen from a flat distribution and are there-
fore different from what has been considered in the present
study and in the computer science literature of random
constraint satisfaction problems.
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