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The competition between the Zeeman energy and the Rashba and Dresselhaus spin-orbit couplings is

studied for fractional quantum Hall states by including correlation effects. A transition of the direction of

the spin polarization is predicted at specific values of the Zeeman energy. We show that these values can

be expressed in terms of the pair-correlation function, and thus provide information about the microscopic

ground state. We examine the particular examples of the Laughlin wave functions and the 5=2-Pfaffian

state. We also include effects of the nuclear bath.
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Two-dimensional electrons in strong magnetic fields
have been a rich source of new physics, a prominent
example being the discovery of fractional quantum Hall
states [1,2]. At large cyclotron energy the ground state is
well approximated assuming a small number of completely
filled low Landau levels (LLs) while the large degeneracy
of the partially filled highest LL is resolved by the electron
interaction.

Additional spin degeneracy is obtained at vanishing
Zeeman coupling, realized in GaAs=AlGaAs heterostruc-
tures by confinement [3], hydrostatic pressure [4], or gate
modulation [5]. Under these conditions, the ground state
can still be spin polarized due to the Coulomb interaction,
but the polarization direction is determined by small spin
anisotropies induced by the spin-orbit interaction. The
effect of the spin-orbit coupling in the quantum Hall re-
gime was studied in [6–12]. There, it was shown that below
a critical value of the Zeeman energy the spin polarization
deviates from the perpendicular direction and acquires an
in-plane component. The previous treatment, however, was
restricted to the case of integer filling factors while we
examine here the fractional regime. This represents a non-
trivial extension due to the highly correlated nature of the
fractional wave functions, as opposed to the integer quan-
tum Hall states. Furthermore, we obtain the effect of the
simultaneous presence of Rashba and Dresselhaus spin-
orbit couplings [13,14].

As a main result, we find that by including correlation
effects the polarization transition explicitly depends on the
quantum Hall ground state, and to leading order is deter-
mined by the pair-correlation function. This provides a new
way to address many-body properties of the wave functions
in the fractional regime. In fact, polarization measurements
can be performed with established experimental tech-
niques, as, in particular, photoluminescence [15] or NMR
studies [16]. Furthermore, polarization properties are gen-
erally less affected by disorder [1] (in contrast to, e.g., gap
measurements).

Our discussion is generally applicable to polarized quan-
tum Hall states. We consider here the Laughlin wave

functions and the Pfaffian state at � ¼ 5=2 [17–20]. The
latter has received special attention [21–25] since it might
support excitations with non-Abelian statistics [26]. This
proposal is consistent with the recent observation of e=4
charged quasiparticles [24,25].
Let us assume a high-field ground state with a partially

occupied highest LL which is fully spin polarized along an
arbitrary direction ~n. Further, a certain number J of lower
LLs are fully occupied for both spin orientations. The
anisotropy in the polarization direction ~n is determined
by the Zeeman energy and a general combination of
Rashba (�) and Dresselhaus (�) spin-orbit interactions

�Ĥ ¼ �ð�̂x�̂y � �̂y�̂xÞ þ �ð�̂x�̂x � �̂y�̂yÞ � g�BB

2
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(1)

where B> 0 (an opposite polarization is obtained if the

magnetic field ~B is along þẑ), and �̂=m is the standard
kinematic velocity [1,2]. Second-order perturbation theory
in the spin-orbit interaction gives us the angular-dependent
energy correction, expressed in terms of the spherical
coordinates (�, ’) of ~n
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In Eq. (2), N is the total number of electrons, p ¼ ð��
2JÞ=� is the polarization without spin-orbit coupling, and
we defined the interaction parameter [27] 	 ¼
ðe2=
‘Þ=@!c, where !c ¼ eB=mc, ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@c=eB
p

is the
magnetic length, and 
 the dielectric constant. The expres-
sions for f1;2 are provided in [28] and we discuss later their
explicit form to leading order in 	.
From Eq. (2) we immediately obtain that the polariza-

tion ~n satisfies sin2’m ¼ sgnð��Þ (we find f2 > 0). The
anisotropy in ’ disappears for � ¼ 0 or � ¼ 0 [6,7]. The
polarization ~n can be tilted from the vertical direction, in
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which case � is given by

cos�m ¼ g�BB� 2m�2�½2J þ 1� 	f1ð	; �Þ�
2m�2þ	f2ð	; �Þ

; (3)

where �2� ¼ ðj�j þ j�jÞðj�j � j�jÞ. It is easiest to con-
sider the case in which the g factor is changed at fixed
external parameters [3–5]. The transition from�ẑ toþẑ is
illustrated in Fig. 1. It occurs around gc, which corresponds
to the condition of in-plane polarization ~n

gc ¼ 2m�2�
�BB

½2J þ 1� 	f1ð	; �Þ�; (4)

and the transition region has a width of 2�g, where

�g ¼ 2m�2þ
�BB

	f2ð	; �Þ: (5)

At � ¼ � ¼ 0 one has as usual gc ¼ �g ¼ 0, while for
the noninteracting problem with spin-orbit interaction
gc � 0 but still �g ¼ 0. Thus, the Coulomb interaction
results in a shift�	f1 in gc and opens a finite region�	f2
in which the polarization ~n acquires an in-plane compo-
nent. Note also that from Eqs. (4) and (5) we obtain gc ¼ 0,
but still �g � 0, in the special case j�j ¼ j�j.

The effect of an in-plane component of the external field
is straightforward to include in Eq. (2), via a term
1
2 g�BBk cosð’� ’kÞ sin�. This results in a correction to

the equilibrium values (�m,’m) of the polarization ~nwhich
is anisotropic in the field angle ’k.

A calculation of f1;2 is in general difficult, but the

leading contribution in 	 can be obtained explicitly in
terms of ‘‘generalized’’ pair-correlation functions

gh;ki;j ðr1; r2Þ [28]. These are generated iteratively from the

ordinary pair-correlation function, which we parametrize
as in [29]
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where z ¼ z1 � z2 (z� ¼ x� þ iy�) and the prime indi-
cates a summation over positive odd values of m only. It is
these fcmg that characterize the specific ground state and
also parametrize the final results for f1;2.
We find [28], at 0< �< 1,
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and at 2< �< 3,
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where the summations are restricted to positive odd inte-
gers. The remarkable result f1 ¼ f2 when 0< �< 1 is
only established to lowest order in 	.
As a first application, we consider now the case of the

Laughlin trial wave functions, which are appropriate for
� ¼ 1=M where M is an odd integer. For simplicity, we
adopted the approximation used in [29]. This amounts to
set cm ¼ �1 for m<M and cm ¼ 0 for m>Mþ 4. The
three remaining coefficients are determined by exact sum
rules [29]. We obtain f1;2 ¼ 0:0710, 0.0301 for M ¼ 3, 5,
respectively. These values show small deviations for more
accurate parametrizations of the fcmg coefficients (e.g.,
using the fcmg of [30] gives f1;2 ¼ 0:0708, 0.0300). The
same approximation is used at � ¼ 2þ 1=M and, by mak-
ing use of the particle-hole symmetry [28], the states at
� ¼ 1� 1=M and � ¼ 3� 1=M can also be studied.
We turn now to the Pfaffian (Pf) trial state, which

implies half filling of the highest LL (� ¼ 1=2, 5=2). A
closely related compressible state is the polarized compos-
ite Fermi sea (CFS). The Pfaffian state is produced by
pairing of free composite Fermions (CFs) [31,32], due to
their residual interaction. Therefore, the quantitative prop-
erties of these two trial states are very similar [33]. We list

FIG. 1. Values of gc (negative dots) and �g (positive dots), as
obtained from Eqs. (4) and (5) for states at � ¼ 1=M (and their
particle-hole conjugates), and � ¼ 1=2. The density is chosen
such that B ¼ 5=� (in T), � ¼ 0, and other parameters are given
in the main text. The dashed line is the noninteracting value of gc
(�g ¼ 0 for noninteracting electrons). Inset: general plot of the
polarization angle �m [see Eq. (3)] as a function of the g factor.

TABLE I. Parameters of the pair-correlation function for the
composite Fermi sea (CFS) and Pfaffian (Pf) wave functions.

CFS Pf CFS Pf

c1 �0:5699 �0:4205 c9 �0:3518 0.8761

c3 0.4559 0.0333 c11 0.9403 �1:406
c5 �0:0261 0.3521 c13 �0:7151 1.170

c7 �0:1660 �0:4853 c15 0.1825 �0:3703
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in Table I their fcmg parametrizations, which we obtained
by fitting the pair-correlation functions of [33]. At � ¼ 1=2
we have fCFS1;2 ¼ 0:20 and fPf1;2 ¼ 0:22, while at � ¼ 5=2

fCFS1 ð0; 5=2Þ ¼ 1:16; fPf1 ð0; 5=2Þ ¼ 1:01; (10)

fCFS2 ð0; 5=2Þ ¼ 0:49; fPf2 ð0; 5=2Þ ¼ 0:45: (11)

Evidently, the values of f1;2 reflect the different correla-

tions of these two trial states. We obtain a �10% relative
change in the values of f1;2, which is significantly larger

than the change in the total energy [33].
The values of f1;2 can be accessed through the measure-

ment of gc and �g [see Eqs. (4) and (5)], which makes
them an experimentally relevant characterization of the
quantum Hall state. As it is clear from Eqs. (7)–(9), f1;2
provide information about the cm coefficients, and there-
fore on the pair-correlation function. In fact, by truncating
the series (7)–(9) to the two lowest terms, an estimate of c1
and c3 from the measured values of f1 and f2 is obtained.
This procedure is justified since the cm prefactors decrease

like m�3=2.
For example, using our ‘‘exact’’ values of f1;2 in (10) and

(11) one obtains for the Pfaffian c1;3 ’ �0:43, 0.07, in
reasonable agreement with Table I and clearly distinct
from the CF sea values. Furthermore, to obtain approxi-
mate values of c1;3 at � ¼ 1=3 and 1=5 would test the

distinct short-range behavior of the pair-correlation func-
tions (�r6 and r10, respectively) of the Laughlin wave
functions. Also in the controversial case � ¼ 7=3 (see,
e.g., [34]), to measure c1 would provide a test of the
Laughlin model at this filling factor.

Let us now estimate the effects for typical GaAs pa-
rameters, and thereby demonstrate that our predictions are
within experimental reach. We evaluate Eqs. (4) and (5)
using m ¼ 0:067m0, 
 ¼ 12:4, and for a symmetric well
with thickness L ¼ 6 nm, close to the value at which the
g factor is zero [3,4]. We obtain for the Dresselhaus cou-

pling @� ¼ �ð�=LÞ2 ’ 27 meV �A, where � ’ 10 eV �A3

[35], and � ¼ 0. The results for gc and �g are plotted in

Figs. 1 and 2 in the range 0< �< 1 and 2< �< 3,
respectively. We assumed a constant density 
 ¼ 1:21�
1011 cm�2 in the first case and 
 ¼ 3:02� 1011 cm�2 for
the second one [17]. As seen, the values of gc,�g are in the
range already realized in practice [3–5].
Figures 1 and 2 show that the effect of the interaction on

the values of gc can be rather large. This is clearly identi-
fied as the deviation of the gc values (points) from the
dashed line, which refers to the noninteracting result.
Furthermore, the transition region �g can be sizable, as
opposed to the noninteracting case �g ¼ 0. When � ! 0
(see Fig. 1), the values of gc approach the noninteracting
linear dependence of Eq. (4) (with J ¼ 0, 	 ¼ 0, and
�2� ¼ ��2). This limit allows one to extract �, indepen-
dently from other methods known in the literature.
We note that the difference between specific realizations

at � ¼ 5=2 (CFS and Pf) is small compared with the total
effect. Nevertheless, we suggest that the relative change
could be detected from temperature-dependent measure-
ments. When the temperature exceeds the pairing energy
(but remains still smaller than the CFs kinetic energy), the
existence of a CF sea was experimentally demonstrated in
[32]. We expect that the CFS values of Fig. 2 would be
observed in this high-temperature regime. With decreasing
temperature, gc and�g evolve into the Pfaffian values, due
to the formation of the incompressible state of paired CFs
[31,32].
Higher order corrections in 	 affect the precise values of

gc and�g. Since 	 is often not particularly small under the
typical conditions at which the � ¼ 5=2 state is observed
(	 ’ 0:74 at the highest field 12.6 T in [36]), measurements
at larger values of B would be desirable. We show in Fig. 3
the high-field dependence of gc, �g from Eqs. (4) and (5).

The f1 coefficient determines the/1=
ffiffiffiffiffiffi
B3

p
correction to the

noninteracting background, which is linear in 1=B. The

f2 coefficient gives the leading /1=
ffiffiffiffiffiffi
B3

p
contribution to

�g. Alternatively, higher orders in 1=
ffiffiffiffi
B

p
have to be ex-

plicitly computed.

FIG. 2. Same as Fig. 1, in the range 2< �< 3. At � ¼ 5=2
both composite Fermi sea (CFS) and Pfaffian (Pf) results are
displayed. The density is such that B ¼ 12:5=� (in T) and � ¼
0. The noninteracting gc is also plotted (dashed line).

FIG. 3. Plot of the values of gc (negative) and �g (positive)
from Eqs. (4) and (5) at � ¼ 5=2, B> 5 T and other parameters
as in the text. The solid and dashed lines correspond to the
Pfaffian state and CF sea, respectively [f1;2 as in Eqs. (10) and

(11)]. The dotted line is the linear noninteracting contribution to
gc (f1 ¼ 0). The dots mark the B-field values of [17,36].
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The assumption of full polarization of the highest LL is
justified at several values of � (e.g., � ¼ 1=M and � ¼
5=2). At other fractional values the ground state can be
unpolarized (e.g., � ¼ 1=2, 2=3) or partially polarized
(e.g., � ¼ 3=5, 3=7). For the latter case, a similar effect
is expected, driven to leading order by the noninteracting
contribution (f1;2 ¼ 0), but our calculation of f1;2 does not
apply. It is of conceptual interest to consider a large value
of�, such that full polarization is obtained around gc in the
whole intervals 0< �< 1 and 2< �< 3. It would then be
possible to observe nonanalytic features at the incompress-
ible values (see [28]), similarly to the predicted cusps in the
total energy [37].

Finally, we note that at ultralow temperatures at which
the � ¼ 5=2 state is observed, there is a significant ef-
fect from the nuclear spin bath. This contribution can be

easily included by interpreting g in Eq. (1) as g ¼ ge �P
ixiAihÎzii=�BB, where ge is the ‘‘bare’’ electron g factor

of the heterostructure and the second term is the
Overhauser shift produced by the hyperfine interaction.
Here, xi are the fractions relative to the different nuclear
species (equal to 0.5, 0.3, 0.2 for 75As, 69Ga, 71Ga, respec-
tively) and Ai are the corresponding hyperfine couplings
(with estimated values [38] 94, 77, 99 �eV). In Fig. 4 we
plot the shift g-ge as function of T for different values of B.
The high-T limit gives g� ge ’ 0:9=T (T in mK), inde-
pendent of B. We see that a change of temperature might
provide a practical way of tuning the small Zeeman ener-
gies involved.
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FIG. 4. Nuclear shift of the hyperfined modified electron
g factor (see text) as a function of temperature T at different
values of B. In the inset, the average nuclear polarization hIi ¼P

ixihÎzii is also shown.
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