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We study a model of strongly correlated electrons on the square lattice which exhibits charge frustration

and quantum critical behavior. The potential is tuned to make the interactions supersymmetric. We

establish a rigorous mathematical result which relates quantum ground states to certain tiling configu-

rations on the square lattice. For periodic boundary conditions this relation implies that the number of

ground states grows exponentially with the linear dimensions of the system. We present substantial

analytic and numerical evidence that for open boundary conditions the system has gapless edge modes.
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Quantum criticality is a key notion in the analysis of
non-Fermi liquid behavior of strongly correlated electrons.
In general, quantum criticality is expected when parame-
ters are tuned such that competing orders are perfectly
balanced [1]. In two or three spatial dimensions, the iden-
tification of quantum critical behavior is quite difficult, due
to a lack of sufficiently powerful analytic methods and to
the limited reach of numerics.

In this Letter, we identify quantum critical behavior in a
specific model for spinless itinerant fermions on a two-
dimensional square lattice. The Hamiltonian combines
standard hopping terms with strong repulsive interactions.
At filling f ¼ 1=2 (one fermion per two sites), this model
develops a Mott insulating phase with a fermion on every
other lattice site. In [2], it was shown that a related model
exhibits a stripe phase upon modest doping. Here, we study
the model in the ‘‘strongly doped Mott insulator phase’’ at
intermediate density.

In the model at hand, interactions have been tuned to
obtain a property called supersymmetry, which we em-
ployed in our analysis. In previous work (for a review
see [3]), we demonstrated that this model develops a
form of quantum charge frustration that leads to an exten-
sive ground state entropy [4,5]. Here, we show that this
same model on the square lattice with an edge possesses
quantum critical edge excitations. We find that this quan-
tum criticality arises due to the competition of two forms of
charge order at densities f ¼ 1=5 and f ¼ 1=4.

Our degrees of freedom are spinless fermions living on
the square lattice. A fermion at site i is created by the

operator cyi with fci; cyj g ¼ �ij. The fermions have a hard

core, meaning that they are not only forbidden to be on the
same site as required by Fermi statistics, but are also
forbidden to be on adjacent sites. Their creation operator

is dyi ¼ cyi P hii, where P hii ¼
Q

j next to ið1� cyj cjÞ is zero
if any site next to i is occupied.

Our model, first introduced in [6], is easiest to define in

terms of the ‘‘supersymmetry’’ operator Q ¼ P
id

y
i . The

Hamiltonian is

H ¼ fQ;Qyg ¼ X

hiji
dyi dj þ

X

i

P hii:

The model is supersymmetric because Q2 ¼ ðQyÞ2 ¼ 0,
which then implies that ½Q;H� ¼ ½Qy; H� ¼ 0. The latter
term in the Hamiltonian combines a chemical potential and
a repulsive next-nearest-neighbor potential. On the square
lattice it reads

X

i

P hii ¼ N � 4FþX

i

Vhii

where Vhii þ 1 is the number of particles adjacent to i,
unless there are none, in which case Vhii ¼ 0. N is the

number of sites. The operator F ¼ P
id

y
i di counts the

number of fermions and commutes with the Hamiltonian.
The chemical potential is fixed at � ¼ 4, and there is no
a priori constraint on the particle number.
The problem of counting the ground states in this super-

symmetric lattice model turns out to be related to some
simple-to-describe (but often difficult to solve) geometri-
cal counting problems (see [4,6]). A heuristic way of
understanding this is from the ‘‘3-rule’’: to minimize the
energy, fermions prefer to be mostly 3 sites apart (with
details depending on the lattice). Using techniques from
cohomology, it was proved for several lattices that the
configurations which satisfy the 3-rule are in one-to-one
correspondence with ground states [4].
The correspondence between these configurations and

ground states holds for a wide variety of boundary con-
ditions. This indicates that the ground state wave functions
exhibit a form of charge ordering. This ordering is akin to
the Néel ordering in an antiferromagnet: the ordered state
is not an exact eigenstate, but one can find a nonvanishing
antiferromagnetic order parameter for the ground state. In
this sense, the ordered state dominates the ground state. For
our model, the structure is even richer, because there are
typically an exponentially growing number of ways of
satisfying the 3-rule. Such behavior is what we mean by
charge frustration. On generic lattices, the number of
ground states grows exponentially with the full (two-
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dimensional) volume of the system [5,6], see also [7].
However, for the square lattice described here, we will
show that for periodic boundary conditions, the number
of ground states grows exponentially with the linear di-
mensions of the system.

An important object in supersymmetric theories is the
Witten index W, which is defined as W ¼ Nb � Nf, where

Nb is the number of bosonic ground states (those with an
even number of fermions), and Nf is the number of fermi-

onic ground states (those with an odd number of fermions)
[8]. By definition, W is a lower bound on the number of
ground states.

We show in this Letter that for the square lattice, the
ground states are in one-to-one correspondence with con-
figurations that come from tiling the plane using the four
rhombuses illustrated in Fig. 1, which for obvious reasons
we call diamonds and squares. Here, the particles sit at the
corners of the rhombuses; along the edges, they are 3 sites
apart. A key result was proved rigorously by Jonsson [9].
He showed that for the square lattice with periodic bound-
ary conditions in both directions, the Witten index is
simply related to tilings with these rhombuses. Precisely,
let tb (tf) be the number of ways of tiling the torus with

these four rhombuses so that there are an even (odd)
number of fermions [or equivalently, an even (odd) number
of rhombuses]. The most general version of this theorem
allows for any type of torus on the square lattice with
periodicities ~u ¼ ðu1; u2Þ and ~v ¼ ðv1; v2Þ. The expression
for the Witten index then reads [9]

Wu;v ¼ Nb � Nf ¼ tb � tf � ð�1Þd��d��dþ ;
where d� � gcdðu1 � u2; v1 � v2Þ and �d is 2 for d a
multiple of three and �1 otherwise.

A natural extension of Jonsson’s theorem is to relate the
total number of ground states to rhombus tilings:

Nb þ Nf ¼ tb þ tf þ �; (1)

where j�j ¼ j�d��dþj. When ~u ¼ ðm;�mÞ and v1 þ
v2 ¼ 3p, we prove this relation explicitly with � ¼
�ð�1Þð�mþ1Þp�d��dþ (see below).

In our supersymmetric models, the problem of comput-
ing the total number of ground states reduces to finding the
cohomology of the supercharge Q [6]. More precisely, the
dimension of the nontrivial cohomology of Q corresponds

to the total number of linearly independent ground states.
The cohomology is the vector space of states which are
annihilated by Q but which are not Q of something else.
To compute the cohomology is in general very difficult.

A useful theorem is the ‘‘tic-tac-toe’’ lemma of [10]. This
says that under certain conditions, the cohomology HQ for

Q ¼ Q1 þQ2 is the same as the cohomology of Q1 acting
on the cohomology of Q2. In an equation, HQ ¼
HQ1

ðHQ2
Þ � H12, where Q1 and Q2 act on different sub-

lattices S1 and S2.
The crucial step is to choose the right sublattices: for the

square lattice, we take a set of disconnected sites for S1 and
a set of (periodic) chains for S2 (see Fig. 1). For free
boundary conditions in either one or both of the diagonal
directions [(m, �m) and (n, n)], the full cohomology
problem has been solved using Morse theory [11]. These
cases can also be solved using ‘‘tic-tac-toe’’ with S1 and S2
as in Fig. 1. To solve HQ2

, we start from the bottom chain.

If a site on S1 directly above this chain is occupied, there is
an isolated site on the bottom chain, leading to a vanishing
HQ2

. It follows that all sites directly above the bottom

chain must be empty. Continuing this argument for sub-
sequent chains, one finds that all sites on S1 must be empty.
Computing H12 is now a trivial step. The dimension of HQ

is related to the number of ground states on the chains that
constitute S2. This depends on the exact boundary condi-
tions. One finds that the dimension of HQ is either one or

zero, except for the cylindrical case periodic in the
ðm;�mÞ-direction with m ¼ 3p and n ¼ 3q or n ¼ 3qþ
1. In that case, the dimension of HQ is 2K, with K the

nearest integer to 2n=3.
For periodic boundary conditions in both diagonal di-

rections, solvingHQ becomes much more involved. This is

due to the fact that solvingHQ2
does not imply that all sites

on S1 are empty. Instead, there are many allowed configu-
rations on S1, and solving H12 becomes highly nontrivial.
We tackled this problem in two steps. First, we solved H12

for the case where S2 consists of 1 chain of arbitrary length,
that is ~u ¼ ðm;�mÞ and ~v ¼ ð1; 2Þ. Then, we extended this
to the case where S2 consists of an arbitrary number of
chains, that is v1 þ v2 ¼ 3p. This establishes (1) with� as
given above. Our proof, which will be presented elsewhere,
resolves the ground state counting problem of this highly
frustrated system on the 2D square lattice. Counting rhom-
bus tilings, which is relatively easy [9], shows that indeed
the number of ground states grows exponentially with the
linear dimensions of the system.
For ~v ¼ ð1; 2Þ, the tilings reduce to a linear sequence of

tiles in arbitrary order. There are zero-energy ground states
at all rational filling fractions in the range between 1=5 and
1=4. The tilings not only count, but indeed seem to domi-
nate the actual ground states. For specific lengths of the S2
chain, we have seen numerically that the charge distribu-
tion of a ground state largely overlaps with that of the
corresponding tiling. We can exploit this to gain physical
insight. There are two uniform phases: all squares at 1=5

(n,n)

(m,−m)

FIG. 1 (color online). The diamonds on the left and squares in
the middle. On the right we show the square lattice rotated by
45�. Sublattice S1 is indicated by the circles, and sublattice S2 is
indicated by the drawn lines.
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filling and all diamonds at 1=4 filling. One diamond in a
phase with all squares is then a zero-energy defect with
fractional charge 1=5. From counting the number of tilings
with one such defect, it follows that a defect can have any
momentum. This is reminiscent of a flat band [12].

We can exploit the effective geometric description of the
space of ground states even more by comparing periodic
and free boundary conditions. For the square lattice
wrapped around the torus with ~u ¼ ðm;�mÞ and ~v ¼
ðn; nÞ, the number of ground states grows as 22ðnþmÞ=3
[9]. On the cylinder, however, if one cuts the torus open
along the ~u-direction, only 22n=3 ground states remain.
Finally, if one also cuts the cylinder open along the
~v-direction, one is left with a unique ground state on the
plane. What happens to this vast number of ground states
that disappear upon changing the boundary conditions?
Consider the picture in Fig. 2. If one identifies the dotted,
zigzagged boundaries both in the ~u as well as in the
~v-direction, one finds that both the tiling with the drawn
lines as well as the one with the dashed lines represent
ground states. However, if one only identifies the bounda-
ries in the ~u-direction, then the tiling with the drawn lines
no longer represents a ground state. Instead, it has two
defects at the edges, which can propagate along the edge.
The only available scale for the energy of the edge mode is
one over the length of the edge, which suggests that the
edge modes are gapless.

To further investigate criticality in this system, we have
studied the model numerically with periodic boundary
conditions such that ~u ¼ ðL; 0Þ and ~v equals (0, 2),
(1, 2), or (3, 3). In all three cases, we have found compel-
ling evidence for critical modes. We investigated how the
spectrum changes upon twisting the boundary condition
along the (L, 0)-direction from periodic to antiperiodic.
This is a powerful way of distinguishing between critical
and gapped states: for a gapped state, the correlation length
is finite, and a change in the boundary conditions will have
an exponentially small effect on the energy. In contrast, for
a critical state, the change in the energy will be substantial
since the correlation length goes to infinity. More specifi-
cally, we will see that the energy has a parabolic depen-
dence on the boundary twist.

In addition to this, one can extract more quantitative
properties from twisting the boundary condition. For a

critical supersymmetric system in 1D with a Fermi surface,
we expect that its continuum limit is described by anN ¼
2 superconformal field theory (SCFT). In such a theory,
twisting the boundary condition corresponds to going from
the Ramond to the Neveu-Schwarz sector. The twist can be
carried out continuously and leads to a spectral flow [13]. If
we define the twist parameter � to be an integer in the
Ramond sector and a half-integer in the NS sector, the
energy is a parabolic function of �,

E� ¼ E�¼0 � �Q�¼0 þ �2c=3; (2)

where c is the central charge.Q� depends linearly on� and
is the sum of the left- and right-moving U(1) charges
[13,14]. Their difference is conserved under the twist and
is related to the fermion number. In the lattice model, we
can go from periodic to antiperiodic boundary conditions
continuously by replacing the term that hops a particle over

the boundary cyNc1 þ h:c: by e2�{�cyNc1 þ h:c:. The eigen-
values of the translation operator p� will now depend
linearly on the twist parameter.
We computed the spectrum for various values of the

twist parameter via exact diagonalization. We find that
the majority of states have a parabolic dependence on the
twist parameter by fitting a parabola to the energy levels as
a function of the twist parameter, or equivalently, as a
function of p�. This clearly indicates that the system is
critical. An example is shown in Fig. 3.
For a critical system, the energy of the SCFT in (2) is

related to the numerically obtained value of the energy via
Enum ¼ 2�ECFTvF=L, where vF is the Fermi velocity and
L the system size. So by comparing the parabolic fit to the
numerics with Eq. (2), we obtain the ratios E�=c and
Q�=c.
We extracted values for E�=c and Q�=c via the above

described method for three models with up to 36 sites (see
Table I). For the lowest energy levels, we typically find that

(m,−m)

(n,n)

FIG. 2 (color online). Edge modes.
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FIG. 3 (color online). In the plot, we show nine energy spectra
as a function of momentum for increasing values of the twist
parameter (0 � � � 1=2, with steps of 1=16) for a system with
33 sites [ ~u ¼ ð11; 0Þ and ~v ¼ ð3; 3Þ] and 8 fermions. The lines
are parabolic fits to the numerical data. The results from the
spectral flow analysis for the line through the origin appear in
Table I.
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(E=c, Q=c) in the NS sector is either (�1=12, 0), (1=12,
1=3), or (1=4, 2=3), all with an accuracy of within 10%.
These values occur in the Kac table for the k-th minimal
model of an N ¼ 2 SCFT with k even [14]. This is very
compelling evidence that each of these systems is critical.

The fits become less reliable for levels with higher en-
ergies, but also if there is an avoided level crossing as a
function of the twist. This happens when the energy levels
in the Ramond or NS sector are degenerate. For the chain,
the avoided crossings vanish in the continuum limit [6] (see
also [15]), so one would expect that for the other models,
this is also merely a finite size feature. For the square lad-
der [ ~u¼ðL;0Þ and ~v¼ð0;2Þ], however, the results from ex-
act diagonalization suggest that the avoided crossing will
prevail for large system sizes. We are investigating this is-
sue using density matrix renormalization group methods
[16].

For the zigzag ladder [ ~u ¼ ðL; 0Þ and ~v ¼ ð1; 2Þ], we
have computed the entanglement entropy of the zero-
energy ground states of the system up to 35 sites. We
find that for 1=4 and 1=5 filling, the entanglement entropy
of the ground states saturates. This implies that the corre-
lation length is finite, and thus the ground states at 1=4 and
1=5 filling are not critical. However, at intermediate fil-
lings, we find good correspondence to the spectral flow
behavior of an N ¼ 2 SCFT. As anticipated in the intro-
duction, this indicates that the system is critical at 2=9

filling, where there is a phase transition due to competing
orders of the diamonds and squares.
The systems we have investigated numerically are rather

confined in one direction. This suggests that we have
essentially probed the edge modes and confirmed that
they are gapless. Whether there are also gapless modes in
the bulk remains unclear from this analysis. However, for a
more generic case such as the triangular lattice, where the
ground state entropy is truly extensive, one could speculate
that a similar argument as above would imply that there are
critical modes in the bulk as well.
It will be most interesting to investigate whether or not

our main findings (quantum charge frustration and quan-
tum criticality induced by strong repulsive interactions for
itinerant lattice fermions) carry over to more generic mod-
els, and if they can be linked to some of the poorly under-
stood physical features, transport properties, in particular,
of strange metals and heavy fermions systems displaying
non-Fermi liquid behavior.
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TABLE I. Results from spectral flow analysis for three types
of tori ðL; 0Þ � ~v. Here, N denotes the number of sites and F the
number of fermions. We show the results for the lowest energy
level for each system. The values for E andQ are given in the NS
sector (� ¼ 1=2), and c is the central charge.

N ~v F E=c Q=c

18 (3, 3) 4 �0:0851 0.004

36 (3, 3) 8 �0:0841 �0:002
24 (3, 3) 5 0.0850 0.337

30 (3, 3) 7 0.0853 0.338

33 (3, 3) 8 0.0855 0.338

9 (1, 2) 2 �0:0858 �0:005
18 (1, 2) 4 �0:0842 �0:002
27 (1, 2) 6 �0:0839 �0:001
17 (1, 2) 4 0.0844 0.336

26 (1, 2) 6 0.0840 0.335

14 (1, 2) 3 0.2666 0.701

23 (1, 2) 5 0.2458 0.657

32 (1, 2) 7 0.2432 0.652

16 (0, 2) 4 �0:0897 �0:014
24 (0, 2) 6 �0:0889 �0:012
32 (0, 2) 8 �0:0885 �0:011
12 (0, 2) 3 0.0911 0.350

20 (0, 2) 5 0.0900 0.348

28 (0, 2) 7 0.0894 0.347

14 (0, 2) 4 0.0855 0.338

22 (0, 2) 6 0.0849 0.337

30 (0, 2) 8 0.0847 0.336
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