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Stochastic Metallic-Glass Cellular Structures Exhibiting Benchmark Strength
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By identifying the key characteristic “‘structural scales’ that dictate the resistance of a porous metallic
glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed
capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal.
The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal
foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present
metallic-glass foams among the strongest foams known to date.
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The fundamentals governing the strength capabilities of
foam materials have been well studied over the past three
decades [1]. Depending on the mechanism accommodating
foam failure, the failure stress will be determined by the
relevant structural property of the parent solid. Specifically,
the strength of a plastically yielding foam will be deter-
mined by the solid yield strength, the strength of a brittle
foam by the solid fracture stress, and the strength of an
elastically buckling foam by the solid modulus. Since
fracture and buckling stresses of solids are generally lower
than plastic yield strengths, brittle or elastically buckling
foams tend to be weaker than plastically yielding foams.
Owing to remarkably high plastic yield strengths, amor-
phous metals are thought to be attractive parent materials
for ultrastrong foams [2]. Considerable advances in the
synthesis, characterization, and testing of metallic-glass
foam have been reported to date [3-14]. Low- to
moderate-porosity foams are found to exhibit strengths
that are roughly consistent with the high plastic yield
strength of the monolithic amorphous metal [7-12]; how-
ever, higher-porosity foams ( > 80%) fail at relatively low
stresses that cannot be correlated to the strength of the
parent solid [13,14]. In this Letter, we demonstrate that, by
matching the key characteristic “‘structural scales” that
dictate the resistance of a metallic-glass cellular structure
against buckling and fracture, the metallic-glass foam can
inherit the plastic yield strength of the amorphous metal up
to porosities as high as 92%. The achievable foam
strengths reported herein appear to equal or exceed those
by strong highly engineered metal foams, placing the
present metallic-glass foams among the strongest foams
of any kind.

Amorphous metals exhibit superb plastic yield
strengths; however, upon unconfined loading they fail
plastically by shear localization attaining very limited
global plasticity terminated by brittle fracture. Unlike ce-
ramics, though, most amorphous metals are capable of
undergoing plastic yielding prior to failing catastrophically
by fracture, an ability attributed to a toughness adequate to
suppress fracture until plasticity is initiated. Fracture
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toughness values for amorphous metals typically range
between 10 and 100 MPam'/2, going from relatively
brittle to relatively tough alloys [15]. Such modest fracture
toughness values combined with high plastic yield
strengths give rise to rather small plastic zone thicknesses
t,, ranging from 107% to 1073 m going from brittle to
tough alloys [15]. Not surprisingly, the attainable plastic
deformability of a metallic-glass column in bending is
found to be dramatically enhanced as the column thickness
approaches ¢, an effect attributed to geometric suppres-
sion of crack nucleation following plastic yielding [16]. In
connection to a cellular metallic-glass structure, the ratio
of the average strut thickness to the plastic zone thickness
/1, can thus be thought as a key structural scale that
dictates the foam’s resistance against catastrophic fracture.
That is, for a metallic-glass cellular structure to be able to
resist catastrophic fracture, 7 should be comparable to or
lower than z.,.. The significance of /¢, as a characteristic
scale of the metallic-glass cellular structure has been well
emphasized in prior literature [2,13,14]. Nevertheless, con-
sideration of this structural scale alone may not be suffi-
cient to determine the overall strength capabilities of a
metallic-glass foam.

In addition to unusually high plastic yield strengths,
amorphous metals also exhibit rather low elastic moduli
giving rise to relatively high elastic strain limits .. A
universal g, of ~0.02 has been recognized for all amor-
phous metals [15], a limit substantially higher than most
conventional crystalline metals whose limits are typically
bounded well below 0.01. Considering such high &, one
would expect metallic-glass columns to be susceptible to
elastic buckling at a relatively low slenderness ratio. The
critical slenderness ratio that determines the stability of a
column against elastic buckling is given by (I/1), =
n/ /4, where the index n depends on the end constraints
and ranges between 1/2 and 2 [17]. Using &, = 0.02, one
can estimate (//7).. for a metallic-glass column to range
between 20 and 40. In contrast, (I/t), for an aluminum
column with &, = 0.005 can be estimated to range be-
tween 40 and 80. Amorphous metals therefore due to their
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high elastic limit are more prone to buckling than conven-
tional metals when subjected to the same loading con-
straints. In principle, a highly porous cellular structure
consisting of struts whose average aspect ratio is compa-
rable to or greater than (I/7)., would be unstable against
cooperative buckling. Using established scaling relations
[1], the critical relative density above which cellular struc-
tures tend to fail cooperatively by buckling can be esti-
mated to be ~(6&,;)?, which for a metallic-glass structure
corresponds to ~0.01 (~99% porosity). In practice, how-
ever, a morphologically irregular cellular structure involv-
ing randomly distributed buckling-prone struts can fail by
buckling percolation at a relative density considerably
higher than the critical one. The extent to which morpho-
logical irregularities influence the buckling resistance of a
cellular structure is well documented in prior literature
[18]. Since amorphous metals are generally more prone
to buckling than conventional metals, the effect of mor-
phological irregularities on the buckling resistance of a
metallic-glass foam would be more dramatic. Indeed,
highly stochastic metallic-glass foams were found to fail
by percolation of buckling instabilities at relative densities
as high as 0.6 [8]. The morphological periodicity or ‘“‘de-
gree of order” of the metallic-glass cellular structure there-
fore represents another characteristic structural scale
which dictates the structure’s resistance against failure by
random buckling.

In this Letter, we demonstrate that, by meeting the key
structural scales identified above, highly porous metallic-
glass foams able to resist fracture and buckling and thus
inherit the plastic yield strength of the parent glass can be
developed. The Pdy;3Ni;qCuy;P,, metallic-glass alloy is
utilized here, and a foaming method based on thermo-
plastic expansion of entrained gas bubbles is employed
[19]. In the present foaming method, foam expansion is
performed at an optimum temperature and strain rate at
which the liquid exhibits high ductility yet adequately low
fluidity, enabling the development of cellular structures
with features that meet the key ‘“‘structural scales’ identi-
fied above. Specifically, a high liquid ductility (strain-rate
sensitivity exponent near unity) enables membrane draw-
ing to thicknesses sufficiently lower than 7., while a low
liquid fluidity (high viscosity) inhibits bubble sedimenta-
tion and promotes sufficient cellular periodicity. By means
of the present method, structurally regular metallic-glass
foams with porosities ranging between 83% and 92% have
been produced. An amorphous 88%-porosity foam is
shown in Fig. 1(a). Optical micrographs of a representative
cross section of the cellular structure are presented in
Figs. 1(b) and 1(c). Intracellular membranes having thick-
nesses on the order of tens of microns can be observed.
Given that 7., for the families of Pd- and Pt-based metallic
glasses is reported to be on the order of hundreds of micro-
meters [15], membranes with 7 < 7, will give rise to
adequately high fracture resistance. Figures 1(b) and 1(c)

FIG. 1 online). (a)

(color
Pd 3Ni;oCu,, P,y foam produced via the present synthesis route.
A pore-free button of equivalent mass is also presented to
demonstrate the tenfold increase in volume produced by foam-
ing. (b),(c) Optical micrographs depicting a cross section of the
cellular structure at different magnifications.

Image of 88%-porosity

also qualitatively demonstrate that the distribution of cell
sizes in the present structures is rather narrow: Average cell
sizes of roughly 0.5 mm can be observed, and substantial
deviations from this average size appear to be rather lim-
ited. The apparent cell-size uniformity suggests that the
cellular structure exhibits good morphological periodicity,
a property that we argue is associated with high resistance
against random buckling.

Compressive testing of foams in the porosity range of
83%-92% was performed. Cylindrical specimens with
polished and parallel loading surfaces having diameters
of 18 mm and heights ranging between 25 and 30 mm
were prepared for mechanical testing. A servo-hydraulic
materials testing system with a 50-kN load cell was uti-
lized. Strain rates of 1 X 10™* s~! were applied. Strains
were measured using a linear variable differential trans-
former. The compressive stress-strain responses of 83%
and 92% porosity foams are shown in Fig. 2. The stress-
strain responses reveal that the foams can be loaded elas-
tically up to a high failure stress (occurring at approxi-
mately 1% strain), at which point they collapse and
continue to deform by repetitive noncatastrophic collapse
events occurring at a high plateau stress. Interestingly, the
yielding response of the present foams prior to collapse
does not exhibit the characteristic extended stress plateau
seen in other highly stochastic metallic-glass foams
[8,10,11], which has been associated with the percolation
of random buckling instabilities [8]. Given the absence of
such a characteristic stress plateau in the loading response,
one can argue that the present foams effectively evade
failure by random buckling. A question then arises as to
which mechanism is primarily responsible for the failure of
these foams: plasticity or fracture?
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FIG. 2. Compressive stress-strain responses of 83% and 92%
porosity foams.

In Fig. 3(a), the image of a collapsed foam specimen is
presented. The features of a propagated collapse band are
examined microscopically using scanning electron micros-
copy. The micrograph of Fig. 3(b) presents a cross section
that reveals a propagated band of crushed cells. As shown
in the micrograph of Fig. 3(c), crashed cells are associated
with large crack offsets revealing that fracture is indeed
one of the main mechanisms of structural failure. In the
micrograph of Fig. 3(d), however, multiple shear bands are
detected in the vicinity of a fracture plane revealing that
considerable plasticity is realized in conjunction with frac-

FIG. 3.

(a) Image of a collapsed foam specimen (arrows in-
dicate a macroscopically propagated collapse band). (b)-
(d) Scanning electron micrographs depicting features of a propa-
gated collapse band at different magnifications. Image (d) high-
lights a fracture plane (thick arrow), dense shear band networks
(line arrows), and a membrane that has undergone severe plastic
deformation (circle).

ture. The presence of such dense shear band networks
suggests that failure may be initiated by plasticity despite
the fact that collapse is ultimately terminated by fracture.

If failure of the present foams is indeed triggered by
plasticity, the foam failure stresses should scale with the
plastic yield strength of the parent amorphous metal. We
thus attempt to investigate such a scaling relation. In Fig. 4,
the foam failure stresses (peak stresses) normalized by the
solid plastic yield strength are plotted against the foam
relative densities (the yield strength and density of
Pdy;Ni;(Cu,,P, glass are taken as 1630 MPa [10] and
9.34 g/cc [3], respectively). The power-law correlation for
plastically yielding foams established by Gibson and
Ashby [1] (power exponent= 1.5; preexponential
constant = 0.3) is also plotted in Fig. 4. The data appear
to conform well to the established correlation, indicating
that the strengths of the present foams scale consistently
with the plastic yield strength of the parent solid, thereby
supporting that these foams are indeed plastically yield-
able. Previously reported data for amorphous Zr-based
foams [14], which are also plotted in Fig. 4, deviate sub-
stantially from the established correlation suggesting that
plasticity is perhaps not the dominant failure mechanism
for those foams.

The ability of the present foams to effectively inherit the
high plastic yield strength of the parent amorphous metal
results in foam strengths that are remarkably high with
respect to the foam porosities. We can demonstrate here
that, at this level of porosity (80%—95%), the present foams
appear to be among the strongest foams of any kind. In
Fig. 5, we plot the strength vs relative density data for the
present foams along with the data for other foams at
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FIG. 4 (color online). Relative strength vs relative density data
for the present Pd-based foams plotted together with data for
previously reported Zr-based foams [14]. The dotted lines rep-
resent power-law fits to the two sets of experimental data, while
the solid line is the power-law correlation for plastically yielding
foams [1].
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FIG. 5 (color). Strength vs relative density data for the present
Pd-based foams, plotted together with data for Ti-6A1-4V foams
[20], ferrous-metal foams [21], previously reported Zr-based
metallic-glass foams [14], aluminum foams [22], and cancellous
bone [23]. The dotted lines represent power-law fits to the sets of
experimental data.

comparable levels of porosity, including Ti-6Al-4V foams
produced by multiple coating techniques [20], ferrous-
metal foams produced by reduction of chemically bonded
ceramic foams [21], previously reported metallic-glass
foams [14], conventional aluminum foams [22], and can-
cellous bone [23]. As seen in the plot, the present metallic-
glass foams exhibit strengths that surpass even those of
highly engineered Ti-6Al-4V or ferrous-metal foams.

In conclusion, by matching the key characteristic struc-
tural scales that dictate the resistance of a metallic-glass
cellular structure against buckling and fracture, foams
capable of yielding plastically and thus inheriting the
plastic yield strength of the amorphous metal up to porosity
levels as high as 92% are produced. The strengths attain-
able by the present foams appear to equal or exceed those
by strong highly engineered metal foams such as Ti-6Al-
4V or ferrous-metal foams, placing the present foams
among the strongest foams known to date.
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