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It is shown that collisional plasma transport is intrinsically ambipolar only in quasiaxisymmetric or

quasihelically symmetric magnetic configurations. Only in such fields can the plasma rotate freely, and

then only in the direction of quasisymmetry. In a non-quasi-symmetric magnetic field, the average radial

electric field is determined by parallel viscosity, which in turn is usually governed by collisional processes.

Locally, the radial electric field may be affected by turbulent Reynolds stress producing zonal flows, but

on a radial average taken over several ion gyroradii, it is determined by parallel viscosity, at least if the

turbulence is electrostatic and obeys the conventional gyrokinetic orderings. This differs from the situation

in a tokamak, where there is no flow damping by parallel viscosity in the symmetry direction and the

turbulent Reynolds stress may affect the global radial electric field.
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An important characteristic of a magnetically confined
plasma is whether it is able to rotate. In this Letter we
establish in which magnetic configurations it can. It is well
known that an axisymmetric tokamak plasma can rotate
(almost) freely in the toroidal direction, but poloidal rota-
tion turns out to be inhibited. This is because poloidal
rotation is damped by ion collisions through parallel vis-
cosity, on the collision time scale, while toroidal rotation is
damped only by cross-field viscosity. The latter can be
caused by either collisions or turbulence but operates on
the confinement time scale. The confinement time for an-
gular momentum is comparable to that of energy and is
typically at least 2 orders of magnitude longer than the
collision time. The fact that collisions do not lead to rapid
damping of toroidal rotation is expressed by the statement
that ‘‘neoclassical transport is instrinsically ambipolar’’
[1,2]. This means that the radial current vanishes in leading
order (in a gyroradius expansion) and is independent of the
radial electric field. The latter can therefore assume any
value, which means that the plasma can rotate at any speed
[3].

It is not obvious a priori what the corresponding situ-
ation should be in a stellarator. Great effort has gone into
optimizing stellarator magnetic configurations to minimize
the collisional ‘‘neoclassical’’ transport, which otherwise
tends to be prohibitively large. Two main optimization
strategies have emerged based on the concepts of quasi-
symmetry and omnigeneity, respectively. The more con-
servative approach is to make the magnetic field
quasiaxisymmetric [4] or quasihelically symmetric [5],
which means that the magnetic field strength does not
depend on both Boozer angles but only on a linear combi-
nation thereof [6,7]. In a perfectly quasisymmetric mag-
netic field all neoclassical properties are identical (in
leading order) to those in the tokamak [8]. A plasma
confined by such a field therefore enjoys instrinsic ambi-

polarity and is free to rotate in the direction of symmetry
[9,10]. In practice it is not possible to create a perfectly
quasisymmetric magnetic field, but it is possible to come
close. Currently the most quasisymmetric stellarator is the
HSX experiment [11], where the ‘‘effective helical ripple’’
is less than 1% over most of the plasma volume.
Quasisymmetry is a special case of omnigeneity, which
means that there is no net (time-averaged) drift of particles
off flux surfaces [12–14]. Omnigenous configurations
therefore have low neoclassical transport, but it is not
immediately clear whether they can support plasma rota-
tion. Here we show that the only magnetic configurations
where instrinsic ambipolarity holds are the quasisymmetric
ones. Even in a perfectly omnigenous magnetic field, the
cross-field transport rates of ions and electrons are unequal
unless the electric field is fixed at a certain value. The
rotation is thus clamped at the corresponding speed, at
least on time scales longer than the ion collision time. In
fact, both its direction and magnitude are fixed, and we
argue that this state of affairs is unlikely to be affected by
turbulence. As shown below, on a radial average taken over
many gyroradii, the Reynolds stress from standard (elec-
trostatic) gyrokinetic turbulence is too weak to signifi-
cantly influence the radial electric field. Only if the level
of turbulent transport is much higher than implied by the
standard gyrokinetic orderings is the Reynolds stress of
significance, unless the magnetic field is quasisymmetric.
On the other hand, in a quasisymmetric field no amount of
turbulence can produce parallel viscous damping of plasma
rotation in leading order.
We begin the analysis by considering collisional trans-

port in a plasma without turbulence. The magnetic field is
arbitrary but is assumed to possess nested flux surfaces
labeled by  . As usual in the theory of plasma confine-
ment, we assume that the gyroradius is shorter than the
macroscopic scale length, and expand in the corresponding
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small parameter, �a ¼ �a=L� 1. In lowest order the
distribution function of each species a is then
Maxwellian whose pressure pa0 and temperature Ta0 are
constant on flux surfaces. In next order, the gyro-averaged
part of the distribution function is determined from the drift
kinetic equation

vkrk �fa1 þ vd � rfa0 ¼ Cað �fa1Þ; (1)

where the independent variables are the energy E ¼
mav

2=2þ ea� and magnetic moment � ¼ mav
2
?=2B.

The drift velocity vd comprises the sum of the magnetic
and E� B drifts. The contribution from latter vanishes in
lowest order since the electrostatic potential is approxi-
mately constant on flux surfaces, � ’ �0ð Þ, but there is a
first-order drift B�r�1=B

2. Multiplying the kinetic
equation by �fa1=fa0, integrating over velocity space and
taking a flux-surface average h� � �i gives an entropy bal-
ance equation,

�
�a �

�rpa0
pa0

þ ear�0

Ta0

�
þ qa � rTa0

T2
a0

�
¼

�Z
d3v �fa1Cað �fa1Þ=fa0

�
;

where �a and qa are the particle and heat fluxes carried by
�fa1. Since Eq. (1) is linear, these are linear combinations of
the radial pressure, electrostatic potential and temperature
gradients. Their contributions can thus be treated sepa-
rately, and we consider the case without pressure or tem-
perature gradients. For simplicity, we also choose the radial
electric field to be so small that the poloidalE� B drift can
be neglected. Multiplying by Ta0 and summing over all
species gives an expression for the radial current,

�0
0ð Þhj � r i ¼

X
a

Ta0

�Z
d3v �fa1Cað �fa1Þ=fa0

�
� 0:

(2)

By definition, the transport is intrinsically ambipolar if,
and only if, this current vanishes, regardless of the value of
�0

0ð Þ (as long as it is small enough to satisfy the linear
approximation). The H theorem then implies that �fa1 is of
the form [15]

�f a1 ¼ ð�a þ �avk þ �av
2Þfa0;

where �a, �a and �a may depend on position but not on
velocity. Moreover, the flow velocities of all species must
be equal, Ta0�a=ma ¼ Tb0�b=mb, and strictly speaking
the temperatures must also be equal, Ta0 ¼ Tb0. However,
for particle species with very disparate masses, such as
electrons and ions, the energy exchange is very small, and
if it is neglected in the corresponding collision operators
then the H theorem does not imply equal temperatures. In
any case, since the collision operator vanishes whenever
the current (2) does, it follows from the kinetic equation (1)
that the part of �fa1 that is caused by the radial electric field
is odd in vk, so that �a and �a vanish. But then

vkrk �fa1 ¼ v2½ð1� �BÞrk�a � �a�rkB=2�fa0
must equal

� vd � rfa0 ¼ mav
2

eaB
3

@fa0
@ 

�
1� �B

2

�
ðB�rBÞ � r ;

for all values of � ¼ 2�=mav
2. (The radial E� B drift has

been neglected here, being smaller than the corresponding
magnetic drift in the gyroradius explantion.) This requires

ma

eB2

@fa0
@ 

ðB�r Þ � rB ¼ Brk�a

¼ 2Brk�a þ �arkB;

and thus implies

ðB�r Þ � r lnB ¼ Fð ÞrkB (3)

for some flux function Fð Þ. Only when this condition is
satisfied is the transport intrinsically ambipolar.
To find the relation of this result to quasisymmetry, we

represent the magnetic field in Boozer coordinates ( , 	,
’),

B ¼ �ð ; 	; ’Þr þ Ið Þr	þ Jð Þr’
¼ r �rð	� 
’Þ;

where 
ð Þ denotes the rotational transform, and Ið Þ and
Jð Þ are the toroidal and poloidal currents, respectively.
Equation (3) now becomes

J
@B

@	
� I

@B

@’
¼ Fð Þ

�


@B

@	
þ @B

@’

�
:

If B is Fourier transformed,

Bð ; 	; ’Þ ¼ X
m;n

�m;nð Þeiðm	�n’Þ;

this requires that the condition

½mJ þ nI � Fðm
� nÞ��m;n ¼ 0

should be satisfied for all (m, n). This can only hold if
�m;n ¼ 0 or

Fð Þ ¼ ðm=nÞJð Þ þ Ið Þ
ðm=nÞ
ð Þ � 1

:

Since the left-hand side is independent of m=n, this rela-
tion can only be satisfied for one particular value of this
ratio, M=N say. The magnetic field variation over the flux
surface then only contains the corresponding helicity

B ¼ X
k

�kM;kNð ÞeikðM	�N’Þ;

and thus can bewritten as B ¼ Bð ;M	� N’Þ. It follows,
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in other words, that the magnetic field in an intrinsically
ambipolar configuration must necessarily be quasisymmet-
ric. By adding the E� B velocity to the parallel flow
velocity carried by �fa1 it is straighforward to show that
the plasma rotates in the symmetry direction (when the
temperature gradient vanishes), as one would expect.

In order to assess the robustness of this result, we now
consider the effect of electrostatic turbulence on the radial
electric field. The magnetic field is assumed to be general,
i.e., not necessarily quasisymmetric. We start by construct-
ing a vector field

G ¼ b�r 
B

þ uB;

where b ¼ B=B and the function uð ; 	; ’Þ is chosen so
that

b � ru ¼ 2

B2
ðb�r Þ � r lnB;

which implies r �G ¼ 0. The integrability condition for
this equation is satisfied if the equilibrium has isotropic
pressure in lowest order, i.e., j� B ¼ rp0. In a quasisym-
metric field u ¼ �Fð Þ=B2. We now take the scalar prod-
uct of G with the momentum equation

@ð�VÞ
@t

þr � ð�VV þ pIþ �Þ ¼ j�B;

where � is the plasma density, V the flow velocity, � the
viscosity, and I the identity tensor. On an average over
time and over a flux surface we obtain

hj � r i ¼ �hr � ð�VV þ pIþ �Þ �Gi
¼ hð�VV þ �Þ:rGi

� 1

V 0ð Þ
@

@ 
hV 0ð Þð�VV þ �Þ:Gr i; (4)

where Vð Þ is the volume within the flux surface  . This
expression for the average radial current in terms of vis-
cosity � and Reynolds stress �VV is quite general.
However, interesting conclusions can be drawn if we as-
sume that any turbulent fluctuations obey the orderings
usually made in gyrokinetic theory. The viscosity is in
lowest order given by the parallel and ion gyroviscosity
tensors

� ¼ ðpk � p?Þðbb� I=3Þ þ �gi þOð�2
i pÞ; (5)

where the pressure anisotropy and ion gyroviscosity are of
order ðpk � p?Þ=p� j�gij=p� �i, and the flow velocity

is usually assumed to be of order V � �ivTi, where vTi is
the thermal ion speed. It follows that the Reynolds stress in
Eq. (4) is smaller than the viscosity, �VV � �. However,
since fluctuating quantities in gyrokinetics may vary on the
ion gyroradius length scale �i while equilibrium quantities
only vary on the macroscopic scale length L, the Reynolds
stress and fluctuating portions of viscosity in the last term
of Eq. (4) are not necessarily negligible. On the other hand,

if we take an integral over the volume between two flux
surfaces,  1 and  2, so as to get an expression for the
volume averaged radial current,

Z  2

 1

hj � r iV 0d ¼
Z  2

 1

h�:rGiV0d � ½hð�VV

þ �Þ:Gr V 0i� 2

 1
; (6)

then the second term on the right becomes smaller than the
first one if the separation between the flux surfaces is much
larger than the gyroradius. This is because if �r� ð 2 �
 1Þ=jr j is the characteristic distance between the flux
surfaces and �V � V 0jr j�r the volume between them,
then

Z  2

 1

�:rGV0d � �ip�V;

is much larger than

½hð�VV þ �Þ:Gr V 0i� 2

 1
� �2

i p�VðL=�rÞ; (7)

if �r� �iL. Since the lowest order �gi does not contrib-

ute to the first term on the right-hand side of Eq. (6), on a
volume average taken over a radial length scale exceeding
the gyroradius (but possibly still smaller than the macro-
scopic length), the radial current is determined by parallel
viscosity alone. Insofar as the parallel viscosity is deter-
mined primarily by neoclassical processes, we thus expect
the average radial electric field to be set by the condition of
ambipolar collisional transport. Small-scale ‘‘zonal flows’’
may be produced by Reynolds stress and �gi, but the

average radial electric current is not. The point is that, in
a tokamak or a quasisymmetric stellarator, the average
radial current produced by neoclassical tranport is compa-
rable to that driven by the Reynolds stress (in terms of the
�-ordering), but in a non-quasi-symmetric stellarator the
neoclassical current is a factor ��1

i larger and therefore
dominates.
Before closing, it is appropriate to discuss two issues.

The first one is whether the parallel viscosity is indeed set
by collisional processes or turbulence. In principle it is
possible that strong turbulent fluctuations may affect the
first-order distribution function �f1 to such an extent that the
parallel viscosity departs from its neoclassical value. This
is, however, difficult to achieve within the gyrokinetic
ordering, where the collision frequency must be very small
in order not to exceed the rate at which turbulent fluctua-
tions scatter particles in velocity space through the fluctu-
ating electric field (For example, for ions the collision
frequency must not exceed �2

i vTi=L, essentially because
the parallel electric field is small in gyrokinetics, Ek �
�iTi=eL). Furthermore, if turbulence did affect the parallel
viscosity, it would also change the bootstrap current from
its neoclassical value, contradicting observations both in
tokamaks and stellarators.
A second point of interest is what happens to the pre-

diction (6) in the limit of a quasisymmetric magnetic field.
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The parallel viscosity tensor (5) satisfies

r � �k ¼ �1
3r�k þ brk�k þ �kð�� brk lnBÞ;

where �k ¼ pk � p? and

� ¼ b � rb ¼ r? lnBþ�0rp0=B
2

is the curvature vector. Therefore,
�ðr � �kÞ � ðB�r Þ

B2

�
¼

�
�k
3B2

ðB�r Þ � r lnB

�

and
�ðr � �kÞ � B

B2

�
¼

�
�krk lnB

3B

�
;

and it follows that hðr � �kÞ �Gi ¼ 0 if the quasisymmetry

condition (3) holds. This means that parallel viscosity does
not contribute to the radial current (4) if the magnetic field
is quasisymmetric. In a nonsymmetric device it is the
dominant term, as we have seen, whereas in a quasisym-
metric field the current is instead determined by Reynolds
stress and off-diagonal components of the viscosity tensor.
This reflects the situation in a tokamak, where the radial
electric field is set by turbulent and neoclassical transport
of angular momentum.

As already mentioned, it is not possible to achieve exact
quasisymmetry. It is therefore natural to ask how nearly
quasisymmetric a stellarator must be in order for it to
behave like a tokamak in terms of intrinsic ambipolarity.
The answer depends on the collisionality regime, since the
nonambipolar current is sensitive to collisionality. In the
low-collisionality ‘‘1=�-regime’’, the diffusion coefficient
scales as (e.g., [16])

Da � 
3=2h �2
a

Ta
ma�a

;

where 
h is the effective helical ripple and �a the collision-
ality. The nonambipolar current is thus of order

hj � r i � 
3=2h �2
i

pi�i

�i
;

where �i is the ion gyrofrequency. This current exceeds
that driven by the Reynolds stress on a volume average,
Eq. (7), if


h >

�
�iL

�i�r

�
2=3
:

In other words, if the average is taken over the volume
between two flux surfaces a distance�r ¼ N�i apart, with
N > 1, then


h >

�
L

N�

�
2=3
:

If the mean-free path � ¼ vTi=�i is long, it is difficult to
achieve intrinsic ambipolarity in practice.

In summary, we have shown that a stellarator plasma can
rotate freely only if the magnetic field is quasisymmetric.
Otherwise the radial electric field is set by the condition
that the collisional transport be ambipolar, and the plasma
rotation is clamped at the corresponding value, at least in
the absence of strong momentum sources. On a radial
average, this conclusion also holds in the presence of
electrostatic turbulence, as long as the usual gyrokinetic
orderings are satisfied. Locally, turbulent Reynolds stress
can however produce zonal flows, which therefore deserve
study, particularly as they may affect the turbulent trans-
port [17,18].
We are grateful to Craig Beidler, Henning Maaßberg,

and Jürgen Nührenberg for helpful comments.

[1] P. H. Rutherford, Phys. Fluids 13, 482 (1970).
[2] F. L. Hinton and R.D. Hazeltine, Rev. Mod. Phys. 48, 239

(1976).
[3] In the following, we therefore use the phrase ‘‘can rotate

freely’’ as a synonom to ‘‘is intrinsically ambipolar.’’
[4] J. Nührenberg, W. Lotz, and S. Gori, Theory of Fusion

Plasmas (Editrice Compositori, Bologna, 1994), p. 3.
[5] J. Nührenberg and R. Zille, Phys. Lett. A 129, 113 (1988).
[6] M.Yu. Isaev, M. I. Mikhailov, and V.D. Shafranov, Plasma

Phys. Rep. 20, 319 (1994).
[7] A. H. Boozer, Plasma Phys. Controlled Fusion 37, A103

(1995).
[8] A. H. Boozer, Phys. Fluids 26, 496 (1983).
[9] H. Sugama and S. Nishimura, Phys. Plasmas 9, 4637

(2002).
[10] D. A. Spong, Phys. Plasmas 12, 056114 (2005).
[11] J.M. Canik, D. T. Anderson, F. S. Anderson, K.M. Likin,

J. N. Talmadge, and K. Zhai, Phys. Rev. Lett. 98, 085002
(2007).

[12] L. S. Hall and B. McNamara, Phys. Fluids 18, 552

(1975).
[13] J. R. Cary and S. Shasharina, Phys. Plasmas 4, 3323

(1997).
[14] It was demonstrated in Ref. [13] that an analytical mag-

netic field that is strictly omnigenous must also be quasi-

symmetric. However, this appears irrelevant in practice

since it was also shown that (in principle at least) it is

possible to construct fields which are very nearly (perhaps

arbitrarily close to) omnigenous while being far from

quasisymmetric.
[15] P. Helander and D. J. Sigmar, Collisional Transport in

Magnetized Plasmas (Cambridge University Press,

Cambridge, England, 2002).
[16] D. D.-M. Ho and R.M. Kulsrud, Phys. Fluids 30, 442

(1987).
[17] H. Sugama and T.-H. Watanabe, Phys. Rev. Lett. 94,

115001 (2005).
[18] P. Xanthopoulos, F. Merz, T. Görler, and F. Jenko, Phys.

Rev. Lett. 99, 035002 (2007).

PRL 101, 145003 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

3 OCTOBER 2008

145003-4


