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A theory that describes how to load negative charge into a nonlinear, three-dimensional plasma

wakefield is presented. In this regime, a laser or an electron beam blows out the plasma electrons and

creates a nearly spherical ion channel, which is modified by the presence of the beam load. Analytical

solutions for the fields and the shape of the ion channel are derived. It is shown that very high beam-

loading efficiency can be achieved, while the energy spread of the bunch is conserved. The theoretical

results are verified with the particle-in-cell code OSIRIS.
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Plasma-based acceleration relies on an underdense
plasma to transfer the energy from a laser beam or an
electron beam to a trailing bunch of electrons or positrons
[1,2]. The beam load is accelerated in a wake moving with
a velocity near the speed of light, c, until the driver’s
energy is exhausted or—in the case of a laser driver—until
it outruns the plasma wave. Major advances in both laser-
and beam-driven accelerators have recently been achieved
in a regime in which the fields of the driver are so intense,
they push all plasma electrons aside, generating a pure ion
channel [3].

For the laser-driven accelerator [1], experiments [4,5]
have inferred and simulations [6–8] have demonstrated that
electrons self-injected into the ion channel can form a
quasimonoenergetic beam. Externally injected, low-charge
bunches have been shown to improve the reproducibility
and the quality of the final electron beam [9]. In the beam-
driven case [2], stable acceleration of the tail of a 42 GeV
electron beam culminated in the doubling of the energy of
some electrons in less than 1 m [10]. The high-gradient
acceleration of a short trailing electron bunch in the wake
of a driving beam, which is central to the afterburner
concept [11], has also been achieved [12]. A theory that
describes the wakefield in this blowout regime has recently
been developed [13,14].

While there has been tremendous progress both experi-
mentally and theoretically on understanding how wakes
are excited in the 3D nonlinear regime, there has been little
work on how the trailing beam loads the wake. In the linear
regime, the issue of beam loading was addressed in
Ref. [15], where the wakefield generated by the trailing
bunch was superimposed on that of the driver to yield the
final accelerating field. Thus, the maximum charge that can
be loaded was evaluated and the current profile that makes
the wakefield within the bunch flat was determined.
Ref. [15] also discussed the effects of transverse beam
loading, emittance, efficiency, and phase slippage, and

argued that beams with spot sizes much smaller than those
of the wake are likely to be required.
When blowout occurs, the accelerating field is identical

within each transverse slice of the ion channel [13,14], so
as opposed to the linear regime, transverse beam loading
does not affect the energy spread of the beam. Addi-
tionally, because the focusing force in the ion channel is
linear, the emittance can be conserved. Therefore, the most
important consideration for reducing the energy spread is
keeping the accelerating field constant along the propaga-
tion direction. We note that for high-energy physics appli-
cations, narrow trailing bunches are still needed for
matched beams and for reducing synchrotron radiation
losses [15].
In an estimate offered in Ref. [16], the number of

particles that can be loaded into a 3D nonlinear wake
was found to scale with the normalized volume of the
bubble (or the square root of the laser power). The same
scaling was obtained in Ref. [17] but the coefficient, de-
termined by simulations, was more than 3 times larger than
the one estimated in Ref. [16]. These results are not nec-
essarily contradictory because, in principle, one can choose
to accelerate either a small number of particles to high
energy or a large number of particles to low energy. The
question of merit is not just how many electrons can be
loaded, but what kind of electron bunch can most effi-
ciently convert the energy available in the wake of the
driver into kinetic energy uniformly distributed to its
electrons.
In Ref. [13], the wakefield Ez in each transverse slice

was found to be proportional to the product of the local
radius of the ion channel rb and the slope drb=d�, where
(�, rb) are cylindrical coordinates with � ¼ ct� z and the
driver is moving toward positive z. The shape of the bubble
is represented by the trajectory of the innermost particle
given by Eq. (11) in Ref. [13]. This description is valid
between the points where the particle trajectories cross, at
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the very front and the very back of the bubble. To make
progress analytically, we take the ultrarelativistic limit,
where the normalized maximum radius of the ion channel
is !pRb=c � 1. The equation for the innermost particle

trajectory reduces to (see Ref. [13]):

rb
d2rb
d�2

þ 2

�
drb
d�

�
2 þ 1 ¼ 4�ð�Þ

r2b
; (1)

where we adopt normalized units, with length normalized
to the skin-depth c=!p, density to the plasma density np,

charge to the electron charge e, and fields to mc!p=e. The

term on the right-hand side of Eq. (1) can describe the
charge per unit length of an electron beam driver or a
trailing beam (an additional term for the pondoromotive
force of the laser can also be included [13]). Here we are
interested in the back half of the bubble, where the wake-
field is accelerating and the quantity 2��ð�Þ, with �ð�Þ ¼R1
0 rnbdr, is the charge per unit length of the beam load.

We define � ¼ 0 at the location where rb is maximum,

i.e., drb
d� j�¼0 ¼ 0. In Ref. [13], it was shown that for

!pRb=c � 1, the wakefield is Ez ’ 1
2 rb

drb
d� ; therefore,

Ezð� ¼ 0Þ ’ 0. For � > 0, the electrons are attracted by

the ion channel back toward the �-axis with drb
d� j�>0 < 0

until � ¼ �s where beam loading starts. For � � �s, the
electrons feel the repelling force from the charge of the
accelerating beam, in addition to the force from the ion
channel. The additional repelling force decreases the slope

of the sheath drb
d� , thereby lowering the magnitude of Ez.

This can be seen in the simulation results in Fig. 1, where
the trajectory of the innermost electron for an unloaded

wake is drawn on top of the electron density for a loaded
wake, and the corresponding wakefield for the two cases is
also plotted. The method for choosing the charge profile of
the load is described below.
If the repelling force is too large and the beam too long,

the electrons in the sheath will reverse the direction of their

transverse velocity at some �r, where
drb
d� j�¼�r

¼ 0, and,

consequently, Ezð�rÞ ¼ 0. This is a very undesirable con-
figuration because it implies that the front of the bunch
feels a much stronger accelerating force than the back.
We are interested in trajectories for which rbð� > 0Þ

decreases monotonically. � may then be expressed as a

function of rb: �ð�Þ ¼ lðrbÞ. Substituting r00b ¼ r0b
dr0

b

drb
,

where the prime denotes differentiation with respect to �,

Eq. (1) reduces to
dr0

b

drb
¼ 4lðrbÞ�r2

b
½2ðr0

b
Þ2þ1�

r3
b
r0
b

, which can be

integrated to yield

Ez ’ 1

2
rb

drb
d�

¼ � rb

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

R
rb lð�Þ�d� þ C

r4b
� 1

s
(2)

First we comment on salient features of the unloaded
case ðlðrbÞ ¼ 0Þ. Evaluating the constant in Eq. (2) from
the condition Ezðrb ¼ RbÞ ¼ 0, we obtain:

EzðrbÞ ’ 1

2
rb

drb
d�

¼ � rb

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4
b

r4b
� 1

s
; Rb � rb > 0:

(3)

Equation (3) can be integrated from the top of the bubble
rbð� ¼ 0Þ ¼ Rb to yield the innermost particle trajectory
for 0< rb � Rb:

�

Rb

¼ 2E

�
arccos

�
rb
Rb

���������
1

2

�
� F

�
arccos

�
rb
Rb

���������
1

2

�
; (4)

whereFð’jmÞ,Eð’jmÞ are the incomplete elliptic integrals
of the first and second kind [18].
To minimize the energy spread on the beam, we seek the

beam profile that results in Ezðrb � rsÞ ¼ 1
2 rb

drb
d� jrb¼rs ’

const � �Es within the bunch. The shape of the bubble in
this case is described by the parabola r2b ¼ r2s � 4Esð��
�sÞ. For 0 � � � �s, Ez is given by Eq. (3). Es is found by
requiring that the wakefield is continuous at �s: Es ¼
rs
2
ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R4
b

r4s
� 1

r
. For �s � � � �s þ r2s

4Es
, where �s þ r2s

4Es
is

the location at which the sheath reaches the �-axis, the
profile of �ð�Þ that leads to a constant wakefield is trape-

zoidal with maximum at �ð�sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E4
s þ R4

b

24

q
and minimum

at �ð�s þ r2s
4Es

Þ ¼ E2
s

�ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E4
s þ R4

b

24

s
� Esð�� �sÞ (5)

and the total charge Qs ¼ 2�
Rr2s=ð4EsÞ
�s

�ð�Þd� is

FIG. 1 (color online). The electron density from a PIC simu-
lation with OSIRIS [19] for kpRb ¼ 5 is presented. The beams

move to the right. The broken black line traces the blowout
radius in the absence of the load. On the bottom, the red (black)
line is the lineout of the wakefield Ezð�; rb ¼ 0Þ when the beam
load is present (absent).
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QsEs ¼ �R4
b

16
: (6)

Equation (6) illustrates the trade-off between the number of
particles that can be accelerated and the accelerating gra-
dient. Because Qs � Es is the energy absorbed per unit
length, Eq. (6) also indicates that the efficiency from the
wake to the beam load does not depend on the field Es, as
long as the charge profile is chosen appropriately. In Fig. 1,
the charge of the beam load was chosen using Eq. (6) for
Es ¼ 0:35Rb. For this Es, the location �s can be obtained
either from a simulation for an unloaded wake or from
Eqs. (3) and (4), and the charge profile from Eq. (5).

In a linear wake, a wide electron bunch with total charge
Ql and transverse spot size A, loaded at some �0 with the
appropriate profile [15] can also lead to a flat wakefield

(El ¼ m!pc

e
n1
n0

cosðkp�0Þ) within the bunch. The total ac-

celerating force is: Ql � El ¼ E2
0

8�Að1�
E2
l

E2
0

Þ, where E2
0

8�A is

the energy per unit length of the wake in front of the bunch,

and
E2
l

8�A that behind it. The efficiency, (1� E2
l

E2
0

), increases

for a decreasing accelerating gradient and reaches 100%
for El ¼ 0. This is in stark contrast to the blowout regime,
where the efficiency �b is constant for any Es.

To calculate the efficiency �b, let us assume that the
bunch is terminated at some �f, where ��f � �f � �s <
r2s
4Es

. After this point the wakefield is described by Eq. (2)

with lðrb � rf � rbð�fÞÞ ¼ 0. From the boundary condi-

tion EzðrfÞ ¼ �Es, we obtain Ezð0< rb � rfÞ ’ � rb
2
ffiffi
2

p �ffiffiffiffiffiffiffiffiffiffiffiffiffi
~R4
b

r4
b

� 1

r
, where ~R4

b ¼ R4
bð

r4
f

R4
b

þ r2
f

r2s
� r2

f
r2s

R4
b

Þ. In Ref. [16], it

was shown that the energy in the fields of a bubble is
proportional to R5

b. Therefore, the energy per unit length

available to the bunch Eavail scales as R4
b, and that left

behind it, Elost, scales as ~R4
b. We define the beam-loading

efficiency as �b � ðEavail � ElostÞ=Eavail. Substituting the
expression for ~Rb

�b � Eavail � Elost

Eavail

¼ 1� ð ~Rb=RbÞ4 ¼
~Qs

Qs

(7)

where ~Qs is the charge of a trapezoidal bunch that is
described by Eq. (5) but terminated at �s þ ��f instead

of �s þ r2s
4Es

. We note that the efficiency approaches 100%

for ��f ! r2s
4Es

) ~Qs ! Qs. Because the mathematical

formulation involves approximations, there is still some
energy in the plasma behind the bunch, even with the
optimal �ð�Þ. This is the case in Fig. 1, where a second
bubble with radius Rb2 � Rb=2 does appear, but because
Qs � Es / R4

b, the efficiency is still �b � 90%. The wake-

field within the bunch in Fig. 1 is constant, in agreement
with the theory. We note that a 10% deviation of the total
charge for a fixed bunch length leads to a wake that is no
longer flat.

It is illustrative to compare the amount of charge that can
be loaded into linear and nonlinear wakes. If we assume for

the linear wake an effective A ’ c2=!2
p, which is required

for high efficiency and good beam quality [15], we have

QlEl

mc2=re
¼ 1

8�

�
n1
n0

�
2
�
1� E2

l

E2
0

�
; (8)

QsEs

mc2=re
¼ 1

43
ðkpRbÞ4; (9)

where re ¼ e2=ðmc2Þ is the classical electron radius. In the
linear regime, the density perturbation is n1=n0 	 1. In the
blowout regime, because the total accelerating force scales
with the fourth power of the blowout radius, a radius
kpRb � 5 leads to a total force �1000 times larger than

that in the linear regime. Equation (9) can be converted into
an engineering formula

Qs

1nC

eEs

mc!p

’ 0:047

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1016 cm�3

np

vuut ðkpRbÞ4: (10)

For a bi-Gaussian beam driver with kp�z � 1 and

kp�r 	 1 we have kpRb ’ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nb
n0
ðkp�rÞ2

q
� 2

ffiffiffiffi
�

p
[14],

and for a matched laser driver kpRb ’ 2
ffiffiffiffiffi
a0

p
[14], where

a0 is the normalized vector potential. For example, for a
beam driver with 3� 1010 electrons and �r 	 �z ¼
16:8 �m in a plasma with np ¼ 1017 cm�3, and for a

matched laser-driver with power P ¼ 200TW in a plasma
with np ¼ 1:2� 1018 cm�3, we have kpRb ’ 4. Choosing
eEs

mc!p
¼ kpRb

2 ’ 2, we obtain Qs ’ 1:9nC for the beam-

driven lower-density example and Qs ’ 0:55nC for the
laser-driven higher-density example.
Another analytically tractable case is that of a bunch

with a flat-top profile starting at � ¼ ��s: lð0< rb � r �sÞ ¼
l0. The behavior of the flat-top bunch is important because
it is similar to that of a Gaussian bunch (see below). For
such bunches, Eq. (2) becomes

Ezð0< rb � r�sÞ ’ � rb

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8l0ðr2b � r2�sÞ þ R4

b

r4b
� 1

s
: (11)

There are three distinct cases, all of which can be solved
analytically. For small charge per unit length l0 <
R4
b=ð8r2�sÞ, the plasma electrons reach the �-axis

quickly with some remaining kinetic energy. For
l0 > R4

b=ð8r2�sÞ, there is a minimum radius rm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4l0Þ2 þ R4

b � 8l0r
2
�s

qr
, for which Ezð�mÞ ¼ 0 and

the transverse velocity of the innermost particle changes
sign as described earlier. At �m, the bunch must be termi-
nated; otherwise, for � > �m, it will experience a deceler-
ating field. Because the plasma electrons do not return on
the �-axis, they still have some potential energy. Thus, for
l0 � R4

b=ð8r2�sÞ, there is always some energy in the plasma

behind the bunch.
For a flat-top bunch, the beam-loading efficiency is

maximized if l0 ¼ R4
b=ð8r2�sÞ. Then the shape of the bubble
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and the wakefield are given by

8l0 ¼ r2b þ 1
2ð�� ��s þ

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8l0 � r2�s

q
Þ2; (12)

Ez ¼ �1
4ð�� ��sÞ þ Ezð� ¼ � �sÞ (13)

and the innermost particle will reach the �-axis at ��s þ
���s, where ���s ¼

ffiffi
2

p
r�s
ðR2

b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4
b � r4�s

q
Þ. In this case, the

energy absorption per unit length is identical to that of an
optimal trapezoidal bunch 2�l0���shjEzji ¼ QsEs. The
difference in the accelerating force experienced by the
front and the back of the bunch will tend to increase the
bunch’s energy spread. This can be avoided either by
injecting the bunch with an initial energy chirp to compen-
sate for the effect caused by the field in Eq. (13) or by using
a monoenergetic trapezoidal bunch.

If the driver travels with a velocity slower than that of
the accelerating electrons, these electrons will move with
respect to the wake. In this context, it is interesting to see
what happens if a flat-top electron bunch optimized for
some �1 is instead placed at �2 and �3, both smaller than
�1.

In Fig. 2(a), we compare the lineouts of the wakefield
Ezð�; rb ¼ 0Þ from three 2D cylindrically symmetric simu-
lations with the theoretical results for flat-top beams. For
each simulation, an electron bunch with l0 ¼ 0:25R2

b and

length �� �s ¼ 0:27Rb is loaded at one of three locations:
�1 ¼ 0:67Rb, �2 ¼ 0:53Rb, �3 ¼ 0:31Rb. The open red

squares correspond to loading at �1, the solid blue dia-
monds to �2, and the open green circles to �3. The solid
lines are derived from the theory [for l0 > R4

b=ð8r2�sÞ, the
particle trajectory in the region � �s � � < �m can be writ-
ten in terms of the integral Eð’jmÞ] and are in excellent
agreement with the simulations in all three cases.
We repeated the simulations using Gaussian bunches

with the same number of particles as in the flat-top cases

and NbðzÞ ¼ Nbffiffiffiffiffi
2�

p
�z
e�z2=ð2�2

z Þ, where �z ¼ ���s=ð2
ffiffiffi
2

p Þ.
Each bunch is placed so that its center is at a distanceffiffiffi
2

p
�z from �1, �2, and �3 for the three simulations. The

results, shown in Fig. 2(b), confirm that the Gaussian
bunches may be treated using the theory for flat-top
bunches. In both Figs. 2(a) and 2(b), we observe that the
wakefield is relatively flat regardless of the placement of
the bunch. The initial negative slope is balanced by a
smaller positive slope for most of the acceleration process.
Last we note that we started from Eq. (1), which is the

ultrarelativistic limit of Eq. (11) of Ref. [13] and is ex-
pected to hold for kpRb * 3. For lower kpRb the formalism

described here can still be applied if one numerically
solves Eq. (11) of Ref. [13].
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FIG. 2 (color online). Wakefield lineouts for (a) a flat-top
electron bunch and (b) a Gaussian bunch with the same charge
at three different locations �1ðredÞ, �2ðblueÞ, and �3ðgreenÞ is
plotted from theory [solid lines (a)] and simulations [symbols
(a),(b)].
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