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We obtain the harmonic measure of the hulls of critical percolation clusters and Ising-model Fortuin-

Kastelyn clusters using a biased random-walk sampling technique which allows us to measure proba-

bilities as small as 10�300. We find the multifractal DðqÞ spectrum including regions of small and negative

q. Our results for external hulls agree with Duplantier’s theoretical predictions for DðqÞ and his exponent

�23=24 for the harmonic measure probability distribution for percolation. For the complete hull, we find

the probability decays with an exponent of �1 for both systems.
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The harmonic measure is a fundamental property of
geometric objects. It may be defined by considering the
object to be a grounded conductor with fixed charge of
unity. The harmonic measure, �, specifies the normal
derivative of the potential (a harmonic function) on the
surface. That is, it is the distribution of electric field on the
hull (surface) of the object. We may also allow many
random walkers to start far away from the object and
record where they land. The probability density of hitting
the hull at a point is �. This quantity is the focus of much
theoretical activity [1–4], and it is of considerable practical
interest because it predicts where particles will diffuse to
for adsorption, catalytic reaction, etching, etc. See also [5].
If the shape in question is fractal, � shows interesting
scaling properties.

Here, we show how to find � numerically for two
systems that produce fractal clusters in two dimensions,
percolation [6] and Fortuin-Kasteleyn (FK) [7] clusters in
the Ising model. Our method allows us to sample very
small probabilities (of order 10�300) using random walker
simulations. In these cases, � is multifractal. Our large
dynamic range allows us to explore this property fully.

The function � is non-negative and normalized on the
hull:

R
d� ¼ 1. A partition function [8] can be defined by

dividing the hull into j boxes of length l,

Zq ¼
X

j

pq
j ; (1)

where pj ¼
R
d� over box j. For large fractals, Zq obeys

Zq � ðl=RÞðq�1ÞDðqÞ; (2)

where R is the length scale of the cluster.DðqÞ is called the
generalized dimension. In our simulations, we choose the
smallest l to be the lattice spacing, and use 2l, 4l, etc., until
a sufficient range is available to fit Eq. (2). We recall some
special values of DðqÞ: Dð0Þ is the fractal dimension of the
support of the measure, which describes the region the hull
covers. Additionally, Dð1Þ ¼ 1 is known from Makarov’s
theorem [9]. A related quantity is the curve fð�Þ, which is

the Legendre transform of �ðqÞ � ðq� 1ÞDðqÞ,
fð�Þ ¼ q

d�

dq
� �; � ¼ d�

dq
: (3)

We will focus on DðqÞ in this Letter.
The exact spectrum of DðqÞ for percolation [2] and the

more general Q-state Potts model [3] can be derived from
generalized conformal invariance in terms of a central
charge c,
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(4)

Percolation and FK-Ising clusters correspond to c ¼ 0 and
c ¼ 1=2, respectively.
Equation (4) was derived for the accessible or external

hull of the clusters [10,11]. For a finite system, the external
hull is approximately produced by closing all fjords on the
complete hull with a neck size of order unity. This reduces
the dimension for percolation and the Ising model from
7=4 and 5=3 for the complete hull to 4=3 and 11=8 for the
external hull, respectively [3].
We should note that Eq. (4) is based on a computation

about a continuum model; in principle, it might not ac-
tually apply to the scaling limit of lattice percolation. The
prediction was made nearly ten years ago and has never
been reliably tested in the significant small-q regime. For
percolation, and for large q, it agrees with results [1] on
relatively small systems,�105 sites. These simulations did
not probe deep into the fractal surface, which is necessary
for the small q regime.
The authors of Ref. [1] used the method mentioned

above: a large number of walkers were allowed to diffuse
until they were absorbed on the hull. This method is able to
measure � to an accuracy of �10�10. However, percola-
tion clusters with 105 sites can have regions of the hull with
probabilities per lattice site smaller than 10�100. Although
these regions do not contribute to DðqÞ for large q, they
dominate for small and negative q.

PRL 101, 144102 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

3 OCTOBER 2008

0031-9007=08=101(14)=144102(4) 144102-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.144102


The computation of DðqÞ is a very difficult numerical
problem (as emphasized in [4]). We have solved this once
and for all for arbitrary shapes; the algorithm of this Letter
can measure probabilities down to 10�300. This accuracy
completely samples lattice systems with �104 hull sites.
We have applied the method on systems as large as �106

hull sites. Here, we consider only percolation and Ising
clusters on a lattice. Our method is quite general and can
also be applied to off-lattice clusters. Reference [4] is our
only real competitor for finding the complete harmonic
measure; however, it relies on a technique that is only
applicable for small DLA [12] clusters.

To treat rare events, we use iterative biased sampling to
keep track of the ‘‘lucky’’ walkers that penetrate deep into
the fjords of the hull; see Fig. 1. In the first iteration, N
random walkers with weight 1=N are released from outside
the cluster and allowed to diffuse until they are absorbed on
the hull. The weights of the walkers are temporarily added
to the probability of the site where they land. This step
probes the cluster to find regions of small measure. The
hull sites that bound regions below a threshold (say 1=10)
are used as the end points of absorbing lines (signposts)
which mark the depth of our current sampling. Then the
probability added in the first step is removed and N more
random walkers are released. These walkers can either be

absorbed on the hull or on a signpost. The weights of the
walkers that touch the hull in this step are permanently
added to the probability distribution. After all walkers have
been absorbed, the signposts are removed.
Next, the probe step is repeated with N walkers released

from the locations along the signposts where walkers ab-
sorbed previously. The threshold for small probability is
reduced by a constant factor, e.g., 10. These walkers carry a
weight given by the fraction of the walkers in the last step
that touched a signpost. The method is repeated until small
probabilities are sampled. We find that errors build up
slowly in the method: even for probabilities of order
10�300, the fractional standard deviation over the ensemble
is only 10–20%.
In effect, we find the Green’s function for the random

walkers by summing over intermediate positions. At the
intermediate points where the sampling is poor, we enrich
it. This is similar to methods used in chemical physics [13].
Figure 2 shows the harmonic measure of the complete hull
of a percolation cluster obtained using this method.
Our simulations are performed on a periodic triangular

lattice with height h and width w such that h ¼ 100w so
that we obtain clusters that wrap around in width but not in
height. One ambiguity which must be resolved is the
definition of random walkers touching the hull. Here, we
interpret this as the walker hopping onto a hull site.
The percolation clusters are grown using the Leath

algorithm [14], with p equal to the site threshold for the
triangular lattice, pc ¼ 1=2. If a given cluster spans the
width of the system, the top hull of the cluster is found
using a simple border walking algorithm related to the
method of generating percolation cluster perimeters by
random walks [15]. The list of complete hull sites of the
cluster is then used in the signpost method to obtain the
harmonic measure. If the topmost vacant sites bordering
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FIG. 2 (color online). Harmonic measure on the complete hull
of a percolation cluster. The hull sites are outlined in black, and
the harmonic measure goes from high to low: light colors are
high and dark, low. The scale is given by the color thermometer
on the right. Sites outside the cluster are white, and inside, gray.
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FIG. 1 (color online). Signpost algorithm. Left: hull of the
cluster divided into boxes A–F. Absorbed walkers are the N ¼
18 dots. Right: histogram of probability in each box. The initial
threshold is 1=6. (a) Probe step: walkers absorb onto the hull.
Below the heavy black line on the histogram p < 1=6. Thus,
boxes B–E should be behind a signpost. (b) N more walkers are
released and absorb onto the hull and the signpost (horizontal
gray line). In this case, there are N=2 walkers on the signpost;
histogram shows the probability on the hull. (c) Next probe step:
N walkers are released from the signpost where walkers in the
step (b) landed (squares). These walkers have half the weight as
the ones released in parts (a) and (b). The heavy line on the
histogram shows the new threshold, 1=36. In the next step, boxes
C, D must be behind a signpost.
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the cluster are used instead of the occupied sites as the
absorbing sites, one obtains the external hull.

For the FK clusters on the Ising model, bonds are placed
between adjacent same-spin sites with probability pc ¼
1� e��Jc , where on the triangular lattice pc ¼ 1� 1=

ffiffiffi
3

p
.

We use the Swendsen-Wang method [16] to equilibrate the
system and simultaneously generate the FK clusters. After
the system is sufficiently equilibrated, we attempt to find a
spanning cluster. These spanning bond clusters must be
converted to site clusters if they are to be used with our
algorithm. We do this by making another triangular lattice
with half the lattice spacing. Bonds are copied to the new
lattice at the even sites on which they are centered. Odd
sites are added to the cluster if two adjacent bonds meet at
the odd site. Next, the perimeter-walk algorithm is used to
record the locations of the hull sites; then, we use the
signpost method to find the harmonic measure. As in
percolation, an external hull can be obtained. However,
for Ising clusters, we need to add artificial vacancies to all
sites bordering the cluster.

The signpost method iteratively obtains smaller and
smaller probabilities by reducing the weight of the random
walkers released in each round, in our case by a factor of
10, on average. We took the number of walkers, N, to de-
pend on the system width, w. For example, for w ¼ 400,
we use N ¼ 2� 106 and for w ¼ 4000, N ¼ 2� 107. The
signpost method is performed until all probabilities have
been measured or until the minimum measurable probabil-
ity 10�300 has been reached. This minimum is close to the
smallest value that can be stored in a double precision
floating point number. Smaller values could, in principle,
be obtained by storing the logarithm of the probability
instead of the probability itself.

The locations of the sites and their associated probabil-
ities are then used to obtain DðqÞ and the histogram of the
probability distribution (see below). DðqÞ is obtained by
applying a linear fit to logZq in Eq. (1) versus logl, where l

is the box length. The fit was performed for a range of l
over which the function was linear.

Simulations of percolation and Ising clusters were per-
formed for a number of system widths. Our results are for
w ¼ 400, 1000, 2000, and 4000. Small systems, w ¼ 400,
have �5� 105 hull sites in the cluster and large systems,
w ¼ 4000, have�5� 106 hull sites.DðqÞ and the slope of
the power-law fit to the probability distribution were ob-
tained for the complete and external hulls of both percola-
tion and the Ising clusters.

Figure 3 shows a comparison between the results of the
complete and external hulls of percolation clusters with the
theory for the external hulls, Eq. (4). There is good agree-
ment among all three for large q, which is not surprising as
the complete hull fjords contribute negligibly to DðqÞ in
this case. For small q, there is significant disagreement
between the complete hull and the theory as the two must
approach different values for Dð0Þ. Previous simulations

[10] have shown thatDð0Þ increases with increasing width;
however, we see a peak at a width of 1000; see Fig. 3. This
is because there is a non-negligible fraction of the hull sites
with probabilities less than 10�300 for large widths. We
expect for very large systems, if we are able to record all
probabilities, that the complete hull DðqÞ will be nearly
identical to the theory for q > 0 because the small proba-
bilities do not contribute. But at q ¼ 0, there will be a jump
toDð0Þ ¼ 7=4 because we are finding all the sites. For q <
0,DðqÞ will be ill-defined (unbounded). In comparison, for
the external hull, we see good agreement between the data
and the theory (4) over the entire range of DðqÞ, especially
for largest system sizes.
The histogram of the frequency of occurrence of the pj

was tallied using exponentially distributed bin sizes, e.g.,
the first box has size 1=2, the next 1=4, then 1=8, etc. The
histogram is a power law over, (incredibly) more than 150
orders of magnitude. The exponent of the power law is fit at
different probabilities using 5 points which roughly span
an order of magnitude in probability. It is shown for the
complete and external hull (inset) in Fig. 4. The exponent
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FIG. 3 (color online). DðqÞ vs q for the complete and external
hulls of percolation clusters for four different widths compared
to theory, Eq. (4) [2] (black line). Inset: small q behavior of
DðqÞ. Dashed lines are the theoretical limit for the external hull;
the vertical dashed line is at �1=24.
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FIG. 4 (color online). Exponent of a power-law fit to the
histogram of the probabilities as a function of p for the complete
hull of a percolation cluster for several different widths. Inset: a
similar plot for the external hull with the associated theoretical
prediction (black line) [2].
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for the complete hull is �0:996� 0:01. We presume that
the exact value of the exponent is �1, which implies that
DðqÞ is undefined for q < 0. Previous simulations [1] were
unable to obtain this result because the smallest probability
that could be measured, �10�10, is still in the transient
regime. The initial overshoot of the power for small sys-
tems corresponds to the probability distribution for the
external hull being picked up by the complete hull. The
power-law exponent is also obtained for the external hull,
�0:93� 0:05, which is consistent with the theoretical
prediction of �23=24 ’ �0:958.

Similar results were obtained for the Ising model.
Figure 5 shows the comparison between the complete
and external hulls of Ising clusters with the theory [3] for
DðqÞ. As with percolation, there is good agreement with
theory for large q for both the complete and external hulls
but significant disagreement at small q for the complete
hull, where Eq. (4) does not apply. The probability power-
law exponents for the complete and external hull are
�0:997� 0:012 and �0:920� 0:048, respectively, for
the Ising model. The complete hull exponent again points
to q ¼ 0 as the discontinuity point for DðqÞ. The external
hull exponent agrees roughly with theory which gives
�47=48 ¼ �0:979.

In summary, we have described a method to obtain
precise values of DðqÞ by including events of extremely
low probability. We probed the internal structure of perco-
lation and Ising model complete cluster hull. We observe
the histogram of occurrences of probability p to be �p�1.
We are not aware of any prediction for this case.

In future work [17], we plan to apply the continuous
version of this algorithm to obtain the harmonic measure
for Diffusion Limited Aggregation (DLA) [12] for which
there are no exact results, though there are several con-

jectures for the form of DðqÞ for small and negative q [4].
For DLA, the harmonic measure plays a central role be-
cause it represents the growth probability at every point on
the cluster at a given time. The best current results forDðqÞ
use iterative conformal maps [18,19] and are restricted to
clusters of �104 sites. Our method can go to much larger
sizes,�107 sites. This is important because the slow cross-
over of some length scales in DLA [20] suggests large
clusters are necessary to approximate the scaling limit. Our
method could shed light on the internal structure of DLA
about which little is known.
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FIG. 5 (color online). DðqÞ vs q for the complete and external
hulls of Ising clusters for four different widths compared to
theory from Eq. (4) (black line). Inset: small q behavior of DðqÞ.
Dashed lines at (�1=48, 3=2) are the theoretical limit for the
external hull.
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