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We show that, by tuning interactions in nonintegrable vector nonlinear Schrödinger equations modeling

Bose-Einstein condensates and other relevant physical systems, it is possible to achieve a regime of elastic

particlelike collisions between solitons. This would allow one to construct a Newton’s cradle with solitons

and supersolitons: localized collective excitations in solitary-wave chains.
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Introduction and model.—One of the most successful
concepts of nonlinear science, with applications to a great
variety of physical contexts, is that of solitons, i.e., local-
ized waves sustained by the balance between dispersion
and nonlinearity. Many types of solitons have been studied,
starting with classical examples found in integrable mod-
els, such as the Korteweg–de Vries (KdV), sine-Gordon,
Toda-lattice (TL), and nonlinear Schrödinger (NLS) equa-
tions, and their nonintegrable extensions.

Solitons are robust against collisions due to the integra-
bility of the underlying equations. A lot of activity has been
directed at the study of soliton collisions and interactions in
nonintegrable systems. Recent advances include the analy-
sis of chaotic scattering [1], the formation of bound states
and clusters of solitons [2,3], and soliton collisions in
vectorial systems [1,4,5].

While it is customary to speak of solitons as elastically
colliding quasiparticles, they clearly feature the underlying
wave structure while passing through each other, especially
in integrable systems. However, elastic collisions between
classical rigid particles lead to a momentum exchange
between them and rebound [6]. In this work, we propose
a soliton-collision scenario of physical relevance, which
allows a realization of truly elastic particlelike collisions
far from integrability. Wewill show how this can be used to
build a vectorial-soliton version of the set of adjacent
classical pendula known as Newton’s cradle and to create
supersolitons, i.e., collective solitonlike excitations over
arrays of solitary waves, leading to a remarkable conjunc-
tion of two generic phenomena: the formation of robust
soliton trains [7] and the emergence of quasidiscrete sol-
itons at a higher level of organization.

The paradigmatic model which allows us to implement
the above-mentioned effects is based on the two-
component NLS equation, arising in sundry contexts [8],
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A direct realization of this model is a two-component, alias
binary (j ¼ 1; 2), Bose-Einstein condensate (BEC), where
uj are wave functions of two atomic states with mass m,

under a strong transverse confinement of frequency �? [9].
The spatial variable x and time t are measured, respec-

tively, in units of a0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m�?

p
and 1=�?, while gjk �

2ajk=a0 are given in terms of the s-wave scattering lengths

ajk, and the numbers of atoms in the two species are

proportional to
Rþ1
�1 jujj2dx. Matter-wave solitons in

BECs have been created experimentally [10] and their
interactions studied theoretically in detail [11–13].
Particlelike elastic collisions and the solitonic Newton’s

cradle.—We consider Eqs. (1) with intracomponent attrac-
tion (g11; g22 < 0) and intercomponent repulsion
(g12; g21 > 0). We choose g11 ¼ g22 ¼ �g12 ¼ �g21 �
1 (without loss of generality), for which case the NLS
system is far from the integrability [14]. In this situation,
the solitons belonging to different components interact
incoherently with a repulsive force, and thus collisions
between such solitons will resemble those between elastic
beads. We will consider models with both harmonic lon-
gitudinal confinement VðxÞ ¼ �2x2=2 and ring-shaped
configurations [15]. Trains of N solitons (n ¼ 1; . . . ; N)
of two atomic species (j ¼ 1; 2) will be taken as super-
positions of (initially) far separated pulses which, in iso-
lation, are single-soliton solutions to either equation (1),
with j ¼ 1 or 2, in the absence of the longitudinal poten-
tial:

ujðx; 0Þ ¼
X

n¼1;...;N

ð�1Þnsechðx� �ðnÞ
j ÞeixvðnÞ

j : (2)

We consider chains of alternating solitons in the two

species, with separation �, i.e., �ðnÞ
1 ¼ n�, �ðnÞ

2 ¼
ðnþ 1

2Þ� and initial velocities vðnÞ
j . In Fig. 1, where the

potential is absent, panel (a) displays a single-collision
event (N ¼ 1). Because of the repulsive character of the
intercomponent interaction, the incident soliton (in field
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u1) transfers all of its momentum to the initially quiescent
soliton (in u2), in full analogy to the behavior of elastic
particles and contrary to the typical behavior of nontopo-
logical solitons in integrable systems. The dynamics of a
ring chain of eight alternating solitons shows the periodic
transfer of momentum in Fig. 1(b).

The parabolic trapping potential compels the solitons to
oscillate around equilibrium positions. In the quantum
counterpart of the model, this setup opens a way to build
a quantum Newton’s cradle made of matter-wave solitons;
see Fig. 2. Unlike other settings explored in BEC [16], the
cradle configuration does not require a lattice potential to
create effective particles, which are here created solely by
the nonlinear interactions.

The Toda-lattice limit: Supersolitons.—We get back to
the setting based on two alternating chains of solitons set
along a ring. Within the adiabatic approximation, which
assumes no deformation of the solitons and identical am-
plitudes in each component, they are approximated by

uðnÞj ðx; tÞ ¼ �jsech½�jðx� �ðnÞ
j Þ� (3)

� exp

�
i _�ðnÞ
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j � ð _�ðnÞ
j Þ2�dt

�
; (4)

�j and _�ðnÞ
j being the peak amplitude and velocity of the

nth soliton in the jth component, respectively. An analysis
based on the soliton perturbation theory [17] yields the
equations of motion for the soliton coordinates:
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where j ¼ 1; 2, �ðjÞ
k � ð�1Þj2�kð�ðnÞ

1 � �ðnþj�2Þ
2 Þ, and

�ðjÞk � ð�1Þj2�kð�ðnÞ
2 � �ðnþj�1Þ

1 Þ. These equations take

into regard only the interactions between nearest neighbors
in the binary chain, as the large separation between the
solitons makes the second-nearest-neighbor interactions
(within each component) negligible. Thus, the evolution
equations for solitons’ phases keep their unperturbed
(single-soliton) form, and Eqs. (5) do not include equations
for the amplitudes as in other approaches (see, e.g., [3]),
since they remain constant.
Equations (5) are expected to be accurate when the

separation between adjacent solitons essentially exceeds
their widths. Similar ideas have been used to derive equa-
tions for the interaction of solitons of other types
[4,7,13,18]. When � ¼ 0, the model reduces to the so-
called diatomic TL, which is not integrable, although some
solutions are known for it [19].
Setting �1 ¼ �2 � � and � ¼ 0 in Eqs. (5), and defin-

ing displacements of the solitons from their equilibrium

positions, q2nðtÞ � 2�½�ðnÞ
1 ðtÞ � nL=N� and q2nþ1ðtÞ �

2�½�ðnÞ
2 ðtÞ � ð2nþ 1ÞL=ð2NÞ�, where L is the total length

of the ring, we get the integrable TL [20]

€q n ¼ � exp½�ðqn � qn�1Þ� � � exp½�ðqnþ1 � qnÞ�;
(6)

where � � 32�4e��L=N . It gives rise to a family of exact
solutions qnðtÞ ¼ qðn� ctÞ for solitons running across the
lattice with the normalized velocity that takes values jcj>
cmin �

ffiffiffiffi
�

p
. In the limit of jcj � ffiffiffiffi

�
p

, the TL soliton re-
duces to a single bead moving in a chain of separated rigid
beads. However, in real condensed-matter media, poten-
tials of the interaction between adjacent atoms are not
exponential, unlike Eq. (6), being closer to those corre-
sponding to anharmonic oscillators. This is why the only
experimental realization of the integrable TL was reported
in electric transmission lines [21] that may be designed in
exact correspondence to Eqs. (6). Our analysis suggests a
possibility to create Toda solitons, of both mono- and
diatomic types, as excitations in interwoven arrays of
matter-wave solitons in binary BECs.
We name these excitations supersolitons, as they are

predicted to occur on top of the array of ‘‘elementary’’
solitons and are expected to be as robust as solitons in
integrable models. In a completely different context, the
same name was previously applied to solitons in super-
symmetric models [22] and, which is closer to the present

(a) (b) (c)

FIG. 2 (color online). Same as Fig. 1 for the Newton’s cradle
built of five solitons, in the presence of the external potential
with �2 ¼ 6� 10�5. In all subplots, the initial separation
between the solitons is � ¼ 12, and the domain is 0< t <
1000, �40< x<þ40. Different oscillation modes are excited
by imparting the initial velocity, of size 0.2, to (a) the top-left
soliton, (b) two ultimate solitons on both sides, with opposite
velocities, and (c) all solitons.

(a) (b)

FIG. 1 (color online). Pseudocolor plots of ju1ðx; tÞj2 (blue)
and ju2ðx; tÞj2 (red) display the evolution of initially well sepa-
rated soliton trains built as per Eq. (2). (a) Collision of two

solitons (N ¼ 1) for �ð1Þ
1 ¼ �20, �ð1Þ

2 ¼ 0, vð1Þ
1 ¼ 0:4, vð1Þ

2 ¼ 0
�30< x<þ30, and 0< t < 100. (b) Multisoliton collisions in

a ring with N ¼ 4 and � ¼ 20, for �ð1Þ
2 ¼ �35, �ð1Þ

1 ¼ �25, and

zero input velocities, except for vð3Þ
2 ¼ 0:5. The displayed do-

main is �40< x<þ40 and 0< t < 250.
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context but is nevertheless quite different, to topological
collective excitations in chains of fluxons trapped in peri-
odically inhomogeneous Josephson junctions or layered
superconducting structures [18]. Actually, the TL super-
solitons represent a higher tier of the soliton hierarchy,
built on top of solitary waves of the strongly nonintegrable
binary NLS system (unlike soliton trains in the integrable
NLS equation [7]).

For small perturbations with frequency ! and wave
number p, Eq. (6) gives rise to a dispersion relation which
determines the phase velocity of linear waves: cph �
!=p ¼ ð2 ffiffiffiffi

�
p

=pÞ sinðp=2Þ. The wave number quantization
imposed by the ring geometry, p ¼ �M=N, M ¼
0;�1;�2; . . . , leads to the discrete velocity spectrum

jcðMÞ
ph j ¼ ð2 ffiffiffiffi

�
p

N=�MÞ sinð�M=2NÞ< cmin ¼
ffiffiffiffi
�

p
: (7)

The excitation of the array by kicking a soliton with
velocity v0 may generate a supersoliton, if

jc0j � ð2N=LÞjv0j> cmin: (8)

In the opposite case, jc0j< cmin, the kick excites small-
amplitude waves. We expect that the latter effect will be
amplified if c0 is close to any resonant value (7); cf.
Ref. [23]. In this Letter, we focus on the study of the
creation and dynamics of supersolitons. Resonant effects
in the excitation of linear waves will be reported elsewhere.

Numerical studies of supersolitons.—In Fig. 3, we dem-
onstrate the generation of a single supersoliton by kicking
one soliton in either component. Since the excitation does
not exactly correspond to a supersoliton, a small amount of
radiation is generated in the form of ‘‘ripples’’ propagating
in the soliton lattice. The transmission of the supersoli-
ton is nearly perfect, as seen from the amplitude plot in
Fig. 3(a) and the full propagation picture in Fig. 3(b). With
the initial amplitude of the solitons in the chain � ¼ 1 and
separation between them L=2N ¼ 5, Eqs. (6) and (8) yield
the threshold (minimum) velocity for the TL supersoliton
ðL=2NÞcmin � 0:19, which is below the kick used here,

jv0j ¼ 0:5. A minor effect observed in Fig. 3(a) and not
considered in our model is weak compression of individual
solitary waves when they are hit by the supersoliton.
The dynamics of the supersolitons is further illustrated

by Fig. 4, which shows elastic head-on and overtaking
collisions between two supersolitons. We stress again
that these behaviors, characteristic of integrable systems,
arise in chains of nonintegrable solitary waves.
Can scalar models support supersolitons?—Soliton col-

lisions in the framework of scalar NLS equations have
been studied in various contexts, and the so-called complex
TL equation has been derived using different approaches
[4,13]. However, trains of equal-amplitude solitons in the
framework of that model turn out to be unstable because of
the phase dependence of the interactions [24]. An example
displayed in Fig. 5(a) shows that the initial kick generates
unstable dynamics in the single-component chain, whereas
its alternating binary counterpart does not display any
instability in Fig. 5(b).
Experimental realization.—The possibility to create

supersolitons in binary BECs depends on the use of the
Feshbach-resonance techniques to properly tune attractive
intraspecies and repulsive interspecies interactions in the
mixture. Atomic mixtures with precisely controllable in-
terspecies interactions have been recently reported in
Ref. [25]. The initial state with alternating solitons, neces-
sary for the implementation of our scheme, may be created
using modulational instability and segregation in an ini-
tially stable binary condensate [26].
Conclusions.—We have explored a physical model

based on the two-component NLS equation which gives
rise to elastic particlelike collisions between solitons be-
longing to different species. These interactions make it
possible to create an analog of the Newton’s cradle and
supersolitons, leading to the prediction of effectively inte-
grable dynamics on top of arrays of solitary waves in
strongly nonintegrable subsystems.

FIG. 3 (color online). Generation of a supersoliton in the chain
of individual solitons of equal amplitudes � ¼ 1 in each com-
ponent, built as per Eq. (2), with� ¼ 10 and N ¼ 24, by kicking

a single soliton with velocity vð22Þ
2 ¼ �0:5. The ring’s length is

L ¼ 240. (a) Spatiotemporal plot of juðx; tÞj2 � ju1ðx; tÞj2 þ
ju2ðx; tÞj2. (b) Pseudocolor plots showing ju1ðx; tÞj2 (yellow)
and ju2ðx; tÞj2 (red). The time interval is 0< t < 250.

FIG. 4 (color online). Collisions between supersolitons created
from the same initial configurations as in Fig. 3. (a) A head-on

collision induced by kick parameters vð3Þ
1 ¼ �vð22Þ

2 ¼ 0:5.

(b) An overtaking collision, with initial velocities vð23Þ
1 ¼ �0:6

and vð19Þ
2 ¼ �0:3. Time intervals in the two panels are 0< t <

250 and 0< t < 350, respectively.
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Our results suggest intriguing questions to explore in the
future such as the possibility of constructing supersolitons
using dark solitons as building blocks, the extension of our
results to multidimensional scenarios, or the possibility of
using solitons of different amplitudes to enhance the stabil-
ity of the soliton trains as was shown in Ref. [27] for the
scalar case.
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