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The complex processes underlying the generation of a coherent emission from the multiple scattering of

photons and wave localization in the presence of structural disorder are still mostly unexplored. Here we

show that a single nonlinear Schrödinger equation, playing the role of the Schwalow-Townes law for

standard lasers, quantitatively reproduces experimental results and three-dimensional time-domain

parallel simulations of a colloidal laser system.
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Random lasers (RL) are a rapidly growing field of
research, with implications in soft-matter physics, light
localization, and photonic devices [1,2]. Since the pioneer-
ing investigations [3,4], different groups reported on ex-
perimental observations, from paint pigments to human
tissue [5–9]. In all of these cases a coherentlike narrow
spectral line emerges from the fluorescence as the pump
energy is increased, and, in some instances, several spectral
peaks have been reported [9,10].

In standard single-mode lasers, without structural dis-
order, the emission linewidth is linked to the electromag-
netic energy stored in the cavity by the so-called
Schwalow-Townes (ST) law [11,12]. An equivalent law
for RL is missing. Nevertheless, various issues (such as
the statistical properties and the link with spin-glass theory
[9,13–17]) were theoretically analyzed, while the leading
model (quantitatively compared with experiments) is that
based on the light-diffusion approximation [18–21], which,
however, overlooks the ondulatory character of the in-
volved photons. Within a different perspective, RL are
due to several localized electromagnetic (EM) states put
into oscillations in a disordered environment (as, e.g., in
[9,17,22,23]). In this framework, it is expected that the
number of involved modes increases with the pump energy
and, correspondingly, the spectrum widens. However, ex-
actly the opposite happens, and this is also accompanied by
the shortening of the emitted pulse [24–26]. In addition, the
fact that strong (or Anderson) localization of light sustains
the RL action is still debated. Ab initio computational
studies were limited to 1D and 2D geometries [27,28],
not accounting for the critical character of three-
dimensional (3D) localization [29]. Monte Carlo simula-
tions neglect interference effects [30–32].

Here we report on an original theoretical formulation;
we quantitatively compare its predictions with experiments
and with the first ever reported 3Dþ 1 ab initio Maxwell-
Bloch simulations. We show that the RL linewidth is ruled

by a nonlinear differential equation, which is the equivalent
of the ST law, and is formally identical to the nonlinear
Schrödinger, or Gross-Pitaevskii (GP), equation governing
ultracold atoms [33]. There is hence a strict connection
between photons in RL and ultracold bosons; the spectral
narrowing observed in RL is thus ascribed to a conden-
sation process [34] of the involved electromagnetic
resonances.
Simulations.—We consider a vectorial formulation of

the Maxwell-Bloch equations [35,36]. 21 nonlinear sto-
chastic partial differential equations are solved by finite-
difference time-domain (FDTD) discretization on a grid
distributed on (typically) 256 processors. We model an
active medium that is infiltrated in the voids of a granular
distribution of particles obtained by molecular dynamics
[37]. We consider 8000 TiO2 particles (average diameter
300 nm) with refractive index 2.9 (Fig. 1). The gain band-
width is 230 nm (�1=tg, with tg the lifetime), and the

central wavelength is �0 ¼ 590 nm (!0 is the angular
frequency). Amplification is only present in the interstices
between colloidal spheres with the pump rate (varied by
the atomic inversion density Na; see [35,36]) constant over
the �3 ps simulation. The lasing action is self-starting
from the noise due spontaneous emission modeled as a
stochastic term.
In the absence of light amplification, the response to a

single cycle pulse (�1 fs) at wavelength � ¼ 532 nm
(Fig. 1) unveils several spectral peaks corresponding to
long-living modes. Field spatial distribution (inset in
Fig. 1) is determined by continuous-wave excitation.
Then we simulate the RL action: When increasing the

pumping, a coherent field is built from noise. Figure 2(a)
shows the snapshot of the EM energy density in the sample
middle section. In Figs. 2(b) and 2(c), we display the
spectra for two pumping levels in quantitative agreement
with the experiments below. The 3D-RL action is mediated
by several modes with overlapping resonances. In real-
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world samples, the RL volume and the number of modes N
are much larger than those found in our simulations; the
outcome is a smoother emission profile (Fig. 4).

Gross-Pitaevskii equation.—The RL frequency content
is given by Að!Þ, such that jAð!Þj2 is the energy stored in
the disordered cavity at relative angular frequency ! with
respect to !0. The loss coefficient is �ð!Þ, and the gain g
depends on the whole shape Að!Þ, as due to the nonlinear
susceptibility of the resonant medium [17]. In the fre-
quency domain, the oscillation condition ‘‘gain ¼ loss’’
reads as g½Að!Þ� ¼ �ð!ÞAð!Þ. Limiting for the moment
to the loss profile �ð!Þ, and following the previous nu-
merical analysis, one has that, in a disordered system
sustaining various resonances, �ð!Þ is a smooth function
interleaved by narrow spectral dips, corresponding to N
localized (high-Q factor) long-living modes (see Fig. 1).

In this case, the loss function �ð!Þ can be modeled as

�ð!Þ ¼ �0ð!Þ � XN
j¼1

�jð!�!jÞ; (1)

where �0ð!Þ is the nonresonant smooth loss profile and
�jð!�!jÞ is a sharply peaked (centered at!j) line shape

corresponding to the localized mode j [�jð!Þ is centered at
! ¼ 0 for later convenience]. Since the RL spectral line is
limited, we take �0ð!Þ ffi �0. For large systems, we also
expect a huge number of modes [9] with comparable
properties; we will hence take �jð!Þ ffi �avgð!Þ, where
�avg is an average resonant line shape. Therefore the

oscillation condition becomes

g½Að!Þ� ¼ �0ð!ÞAð!Þ �X
j

�jð!�!jÞAð!Þ

ffi �0Að!Þ �X
j

�avgð!�!jÞAð!jÞ; (2)

where we exploited the fact than �jð!�!jÞ is much

narrower than Að!Þ, and hence it ‘‘samples’’ the emission
spectrum at !j. In the continuum limit, the right-hand side

of Eq. (2) becomes

�ð!ÞAð!Þ ffi �0Að!Þ �
Z

�avgð!��ÞAð�Þd�: (3)

We then consider the left-hand side (amplifying part)
g½Að!Þ� of Eq. (2), and we exploit the passive mode-
locking laser theory [38,39]. For a finite gain bandwidth
with lifetime tg, Eq. (2) in the time domain is

g0

�
aðtÞ þ t2g

d2a

dt2
� �sjaj2a

�
¼ ½�0 ��LðtÞ�a; (4)

where we introduced the Fourier transform aðtÞ of Að!Þ ¼
F ½a� ¼ ð1=2�ÞR aðtÞ expði!tÞdt and �L ¼ F ½�avg�. In
Eq. (4), g0 is the small signal gain and �s is the gain
saturation coefficient [38,39]. �avgð!Þ is narrow with re-

spect to the gain bandwidth; hence, �LðtÞ can be expanded
around t ¼ 0: �LðtÞ ffi ð�0 � �LÞ½1� ðt=tLÞ2�, where �L

is the average loss for the high-Q modes (�0 >�L) and tL
is their average lifetime. Equation (4) is then cast in a
dimensionless form a ¼ a0’ð�Þ and t ¼ �t0, with a20 ¼
tg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0 � �L

p
=�S

ffiffiffiffiffi
g0

p
tL and t20 ¼ tgtL

ffiffiffiffiffi
g0

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0 � �L

p
:

� d2’

d�2
þ �2’þ j’j2’ ¼ E’: (5)

The ‘‘nonlinear eigenvalue’’ E is given by

E ¼ tL
tg

g0 � �Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�0 � �LÞg0
p ¼ p� 1

�
ffiffiffiffi
p

p ; (6)

FIG. 2 (color online). 3Dþ 1 Maxwell-Bloch simulation of
RL: (a) energy distribution in the sample middle section;
(b) spectrum for Na ¼ 2� 1024 m�3; (c) as in (b) for Na ¼
5� 1024 m�3.

FIG. 1 (color online). Electromagnetic spectrum as obtained
after a wideband excitation; the left inset shows the energy
density in the middle section (� ¼ 586:5 nm, asterisk); a sketch
of the system is also shown on the right.
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where p ¼ g0=�L is proportional to the pump energy and

� � ðtg=tLÞð�0=�L � 1Þ1=2.
It is known that wave resonances in random systems

display a distribution of decay times that is bell-shaped
around some value tL and with comparable width [40].
Equation (5) is the oscillation condition for these modes
with different � (which corresponds to the shift from tL),
including gain saturation, finite gain bandwidth, and the
mode-coupling due to the overlapping resonances.
Equation (5) [or Eq. (4)] is identical to the bound-state
GP equation for the 1D Bose-Einstein condensation (BEC)
with an external potential �LðtÞ. This shows that a spectral
region of high-Q modes acts as a trapping potential for the
energy levels of the excited photons. Frequencies tend to
be concentrated in this spectral range, as Bose-condensed
atoms tend to be localized by the external trap [33].
Equation (5) displays bell-shaped solutions for E> 1
(see, e.g., [41]), and this implies a pumping threshold for
the laser action; the corresponding dimensionless gain

pth ¼ 1þ �2=2þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �2

p
=2 is given by E ¼ 1 (pth ffi

1 as � � 1). As E * 1 (p * pth), an approximated solu-

tion of Eq. (6) is ’ ¼ 21=4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E� 1

p
expð��2=2Þ. The RL

spectrum at the threshold (i.e., for p� pth) is hence

Sð!Þ ¼ jAð!Þj2 ¼ t2gffiffiffi
2

p
��S

ðE� 1Þ exp
�
� !2

8�2W2
th

�
; (7)

with the spectral waist (in frequency !=2�)

2�tgWth ¼
ffiffiffiffi
�

2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg
2tL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

�L

� 1

svuut : (8)

Equation (8) implies that the RL linewidth at threshold is a
fraction of the gain bandwidth (�1=tg) given byffiffiffiffi
�

p
=2

ffiffiffi
2

p
� � 1. For a gain bandwidth of 250 nm and a

RL spike linewidth & 0:5 nm (i.e., tL=tg ffi 500) and tak-

ing for the losses �L ffi �0=1000 [42], it is � ffi 0:1 and

2�tgWth ffi 0:2. For E> 1, the spectral profile is obtained

by the numerical solution of (5); from its Fourier transform
~’ð!t0Þ [inset in Fig. 3(b)] the normalized waist w’½EðpÞ�
and peak p’½EðpÞ� are determined; W ¼ w’

ffiffiffiffi
�

p
=p1=4tg

and Sp ¼ t2gp’=�S are the corresponding for Sð!Þ in

real-world units (Figs. 3 and 5).
In summary, Eq. (6) relates the pumping p to the non-

linear eigenvalue E, which fixes the spectral line shape
through Eq. (4) [or Eq. (5)]; this equation can be hence
considered as the equivalent for RL of the ST law.
Experimental results.—We use a colloidal dispersion of

TiO2 (Sachtleben Hombitan R611) particles in methanol
doped by Rhodamine B (Sigma-Aldrich R6626); the pack-
ing fraction is 0.2 with average index �n ¼ 1:5 (the mea-
sured mean free path by enhanced backscattering for pure
methanol is ‘ ¼ 1700 nm at � ¼ 532 nm); the RL pump is
a 120 ps linearly polarized 10 Hz Nd:Yag laser at 532 nm
and 0.8 mm spot size. Emission is retrieved by a fiber
coupled spectrograph (Jobin Yvon, focal length 140 mm)
and a thermoelectrically cooled CCD camera.
Figure 4 shows the width (standard deviation) and the

peak of the spectrum averaged over 100 laser shots versus
pump energy E; the RL line first narrows and then stabil-
izes to a smooth profile. The best fit with the theory (Fig. 5)
furnishes � ffi 0:14; the threshold pump energy (E ¼ 1) is
Eth ffi 0:09 mJ. In Fig. 5(b), we also display the linewidth
calculated by a Gaussian fit of the FDTD data (the energy
axis has been scaled to fit the experiments).
Conclusions.—A theoretical approach based on a non-

linear bound-state equation, identical to the GP equation
for BEC [33], has been shown to quantitatively agree with
experimentally retrieved laser emission in a colloidal dye-
doped dispersion of TiO2 particles and with 3Dþ 1 first-
principle numerical simulations. RL emission can be re-
lated to a condensation process of several wave resonances
in the presence of disorder, the distribution of their decay
times playing the role of a temporal trapping potential. The
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FIG. 3 (color online). Theory: Peak spectrum (a) and spectral
waist (b) for various � versus the pumping rate in dimensionless
units. Inset: Spectral profiles for E ¼ 1:1, 10, and 20.

FIG. 4 (color online). Experimental results: (a) spectra at en-
ergies 20 �J (thin line) and 1000 �J (shaded area is a Gaussian
fit), inset: corresponding enlarged central spectral region; (b) -
unitary-area averaged spectra (100 shots) vs energy.
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simultaneous spectral and temporal narrowing with the
number photons in RL is hence corresponding to the
spectral and spatial narrowing of the BEC wave function
at the condensation.
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FIG. 5 (color online). (a) Left scale, experimentally retrieved
laser peak spectrum versus pump energy, where the line is a best
fit from theory; right scale, nonlinear eigenvalue (dashed lines
correspond to E ¼ 1). (b) Linewidth vs energy; the continuous
line is the best fit from theory; the FDTD Maxwell-Bloch
simulations (diamonds) are also shown.
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