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Nailing down the unknown neutrino mixing angle �13 is one of the most important goals in current

lepton physics. In this context, we perform a global analysis of neutrino oscillation data, focusing on �13,

and including recent results [Neutrino 2008, Proceedings of the XXIII International Conference on

Neutrino Physics and Astrophysics, Christchurch, New Zealand, 2008 (unpublished)]. We discuss two

converging hints of �13 > 0, each at the level of �1�: an older one coming from atmospheric neutrino

data, and a newer one coming from the combination of solar and long-baseline reactor neutrino data. Their

combination provides the global estimate sin2�13 ¼ 0:016� 0:010ð1�Þ, implying a preference for �13 >

0 with non-negligible statistical significance (� 90% C.L.). We discuss possible refinements of the

experimental data analyses, which might sharpen such intriguing indications.
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Introduction.—In the last decade, it has been established
that the neutrino states (�e, ��, ��) with definite flavor are

quantum superpositions of states (�1, �2, �3) with definite
masses (m1,m2, m3) [1]. These findings point towards new
physics in the lepton sector, probably originating at very
high mass scales [2].

Independently of the origin of neutrino masses and
mixing, oscillation data can be accommodated in a simple
theoretical framework (adopted hereafter), where flavor
and mass states are connected by a unitary mixing matrix
U, parametrized in terms of three mixing angles (�12, �13,
�23) and one CP-violating phase � [1]. The mass spectrum
gaps can be parametrized in terms of �m2 ¼ m2

2 �m2
1 and

of �m2 ¼ m2
3 � ðm2

1 þm2
2Þ=2 [3].

Within this framework, the mass-mixing oscillation pa-
rameters (�m2, sin2�12) and (�m

2, sin2�23) are rather well
determined [3]. Conversely, only upper bounds could be
placed so far on sin2�13, a dominant role being played by
the null results of the short-baseline CHOOZ reactor ex-
periment [4] (sin2�13 & few%).

Determining a lower bound for �13 (unless �13 � 0 for
some unknown reason) is widely recognized as a step of
paramount importance in experimental and theoretical
neutrino physics [1,2]. Indeed, any future investigation of
leptonic CP violation (i.e., of �), and of the neutrino mass
spectrum hierarchy [i.e., of sgnð�m2Þ] crucially depends
on finding a nonzero value for �13. A worldwide program
of direct �13 measurements with reactor and accelerator
neutrinos is in progress, as recently reviewed, e.g., at the
recent Neutrino 2008 Conference [5].

In this context, any indirect indication in favor of �13 >
0 becomes highly valuable as a target for direct searches.
We report here two indirect, independent hints of �13 > 0,
one coming from older atmospheric neutrino data, and one

from the combination of recent solar and long-baseline
reactor data, as obtained by a global analysis of world
oscillation searches. For the first time, these hints add up
to an overall indication in favor of �13 > 0 at non-
negligible confidence level of �90%.
Hint from atmospheric neutrino data.—In a previous

analysis of world neutrino oscillation data [3], we found
a weak hint in favor of �13 > 0, at the level of �0:9�,
coming from atmospheric neutrino data combined with
accelerator and CHOOZ data (see Figs. 26 and 27 in [3]).
We traced its origin in subleading 3� oscillation terms
driven by �m2 [6], which are most effective at cos� ¼
�1 (see Fig. 24 in [3]), and which could partly explain the
observed excess of sub-GeV atmospheric electronlike
events [7]. Such hint has persisted after combination with
further long-baseline (LBL) accelerator neutrino data
[8,9], which have not yet placed strong constraints to �e

appearance. In particular, after including the Main Injector
Neutrino Oscillation Search (MINOS) data [10] presented
at Neutrino 2008 [11], and marginalizing over the leading
mass-mixing parameters (�m2, sin2�23) we still find a
�0:9� hint of �13 > 0 from the current combination of
atmospheric, LBL accelerator, and CHOOZ data,

sin 2�13 ¼ 0:012� 0:013 ð1�;AtmþLBLþCHOOZÞ;
(1)

where the error scales almost linearly up to �3�, within
the physical range sin2�13 � 0.
Hint from solar and KamLAND data.—In past years, the

above ‘‘atmospheric � hint’’ was not supported by inde-
pendent long-baseline reactor and solar neutrino data,
which systematically preferred �13 ¼ 0 as best fit, both
separately and in combination [3]. Therefore, in the global
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data analysis, the hint of �13 > 0 was diluted well below
1�, and could be conservatively ignored [3].

Such a trend has recently changed, however, after the
latest data release from the Kamioka Liquid Scintillator
Anti-Neutrino Detector (KamLAND) [12], which favors
slightly higher values of sin2�12, as compared to solar
neutrino data [13] at fixed �13 ¼ 0. As discussed in [14],
and soon after in [15], this small difference in sin2�12 can
be reduced for �13 > 0, due to the different dependence of
the survival probability Pee ¼ Pð�e ! �eÞ on the parame-
ters (�12, �13) for solar and KamLAND neutrinos [16].
Indeed, recent combinations of solar and KamLAND
data prefer �13 > 0, although weakly [14,15,17].

Remarkably, the recent data from the third and latest
phase of the Sudbury Neutrino Observatory (SNO) [18]
presented at Neutrino 2008 [19] further reduce the solar
neutrino range for sin2�12 and, in combination with
KamLAND data, are thus expected to strengthen such
independent hint in favor of �13 > 0. We include SNO-III
data in the form of two new integral determinations of the
charged-current (CC) and neutral current (NC) event rates
[18], with error correlation � ’ �0:15 inferred from the
quoted CC/NC ratio error [18], but neglecting possible (so
far unpublished) correlations with previous SNO data [13].
We ignore the SNO-III elastic scattering (ES) event rate
[20], which appears to be affected by statistical fluctuations
[18,19] and which is, in any case, much less accurate than
the solar neutrino ES rate measured by Super-Kamiokande
[21].

In the solar neutrino analysis, we update the total
Gallium rate (66:8� 3:5 SNU) [22] to account for a recent
reevaluation of the GALLEX data [23,24]. The latest
Borexino data [25,26], presented at Neutrino 2008 [27],
are also included for the sake of completeness. We do not
include the Super-Kamiokande phase-II results [28], which
would not provide significant additional constraints.
Finally, concerning KamLAND, we analyze the full spec-

trum reported in [12], and marginalize away the low-
energy geoneutrino fluxes from U and Th decay in the
fit. We have checked that our results agree well with the
published ones (in the case �13 ¼ 0) both on the oscillation
parameters (�m2, sin2�12) and on the estimated geo-�
fluxes [29].
Figure 1 (left panel) shows the regions separately al-

lowed at 1� (��2 ¼ 1, dotted) and 2� (��2 ¼ 4, solid)
from the analysis of solar (S) and KamLAND (K) neutrino
data, in the plane spanned by the mixing parameters
(sin2�12, sin

2�13). The �m
2 parameter is always marginal-

ized away in the KamLAND preferred region (which is
equivalent, in practice, to set �m2 at its best-fit value
7:67� 10�5 eV2). The mixing parameters are positively
and negatively correlated in the solar and KamLAND
regions, respectively, as a result of different functional
forms for Peeðsin2�12; sin2�13Þ in the two cases. The S
and K allowed regions, which do not overlap at 1� for
sin2�13 ¼ 0, merge for sin2�13 � few� 10�2. The best-fit
(dot) and error ellipses (in black) for the solarþ
KamLAND combination are shown in the middle panel
of Fig. 1. A hint of �13 > 0 emerges at �1:2� level,

sin 2�13 ¼ 0:021� 0:017 ð1�; solarþ KamLANDÞ;
(2)

with errors scaling linearly, to a good approximation, up to
�3�.
Combination.—We have found two independent hints of

�13 > 0, each at a level of �1�, and with mutually con-
sistent ranges for sin2�13. Their combination reinforces the
overall preference for �13 > 0, which emerges at the level
of �1:6� in our global analysis. In particular, Fig. 1 (right
panel) shows the 1� and 2� error ellipses in the (sin2�12,
sin2�13) plane from the fit to all data, which summarizes
our current knowledge of electron neutrino mixing [30].
Marginalizing the sin2�12 parameter we get

FIG. 1 (color online). Allowed regions in the plane (sin2�12, sin
2�13): contours at 1� (dotted) and 2� (solid). Left and middle panels:

solar (S) and KamLAND (K) data, both separately (left) and in combination (middle). In the left panel, the S contours are obtained by
marginalizing the �m2 parameter as constrained by KamLAND. Right panel: All data.
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sin 2�13 ¼ 0:016� 0:010 ð1�; all oscillation dataÞ;
(3)

with linearly scaling errors. This is the most important
result of our work. Allowed ranges for other oscillation
parameters are reported separately [31]. Summarizing, we
find an overall preference for �13 > 0 at �1:6� or, equiv-
alently, at �90% C.L., from a global analysis of neutrino
oscillation data, as available after the Neutrino 2008
Conference. The preferred 1� ranges are summarized in
Eqs. (1)–(3), and are graphically displayed in Fig. 2.

Conclusions and prospects.—In this Letter, we have
focused on the last unknown neutrino mixing angle �13.
Within a global analysis of world neutrino oscillation data,
we have discussed two hints in favor of �13 > 0, each at the
level of �1�. Their combination provides an overall in-
dication for �13 > 0 at a non-negligible 90% confidence
level. To some extent, the present hints of �13 > 0 can be
corroborated by more refined analyses. Concerning atmos-
pheric neutrinos, an official, complete 3� analysis by the
Super-Kamiokande collaboration, including all experi-
mental details, would be very important. The analysis
should include �m2-driven terms in the oscillation proba-
bility [32,33], which have been neglected in the official
publication [34]. Concerning solar neutrinos, a detailed,
fully documented and official combination of all the SNO-
I, II, and III data [35] would be helpful to sharpen the
bounds on solar �e mixing and to contrast them with
(future) KamLAND data. The latter would benefit by a fur-
ther reduction of the normalization error, which is directly
transferred to the mixing parameters. In our opinion, such
improvements might corroborate the statistical signifi-
cance of the previous hints by another�1� but, of course,
could not replace direct experimental searches for �13 at
reactors or accelerators. Two hints make for a stronger
indication, but do not make for a compelling proof.
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