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We analyze the operation of a molecular machine driven by the nonadiabatic variation of external

parameters. We derive a formula for the integrated flow from one configuration to another, obtain a ‘‘no-

pumping theorem’’ for cyclic processes with thermally activated transitions, and show that in the adiabatic

limit the pumped current is given by a geometric expression.
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Assemblies of molecules that perform specific tasks,
known as molecular machines or motors, are ubiquitous
in biological systems [1]: they act as pumps across cell
membranes, carry loads in cells, and cause muscles to
contract. Remarkably, the construction and manipulation
of artificial molecular machines has in recent years become
feasible [2]. Theoretical models, such as thermal ratchets,
have provided an understanding of the microscopic mecha-
nisms underlying the operation of molecular machines [3].
These systems and models all exhibit the rather surprising
ability to produce directed motion or current in the face of
the violent thermal agitation of the mesoscopic world [4].

Stochastic pumps are molecular machines in which di-
rected current is produced by varying external parameters,
such as chemical environment or applied fields. These
come in two varieties: open pumps are active conduits
for particle flow between reservoirs, while closed pumps
generate internal currents, such as directional rotation in
catenanes, mechanically interlinked ringlike molecules
[5]. Successful theories have been developed to describe
stochastic pumps under adiabatic conditions, that is when
the external parameters are driven slowly [6–9], or for
weak oscillatory perturbations [10]. However, a general
theory of nonadiabatic pumps is lacking. In this Letter we
formulate and analyze a generic model of a nonadiabatic,
closed pump, described by transitions among a network of
N states (e.g. molecular conformations). We derive an
expression for the integrated, directed current along an
arbitrary link in this network [Eq. (4)] and explore its
consequences. In particular, we obtain a ‘‘no-pumping
theorem’’ that applies to the cyclic variation of thermally
activated transitions.

Wewill consider a system with a set of configurations, or
states, labeled i ¼ 1; . . . ; N, and will model transitions
among these states as a Markov jump process. Letting
piðtÞ denote the probability to be in state i at time t, the
system obeys the master equation [11]

_p ¼ Rp; (1)

where p ¼ ðp1; . . . ; pNÞ andR is a transition matrix: when
the system is in state j, the probability rate to jump to state i

is Rij � 0, and Rjj ¼ �P
i�jRij [11]. At time t, the proba-

bility current from state j to state i is

JijðtÞ ¼ Rijpj � Rjipi: (2)

We imagine that the transition rates depend on a vector of

external parameters ~� under our direct control, i.e. R ¼
Rð ~�Þ. For simplicity, we further assume that Rij ¼ 0 if and

only if Rji ¼ 0, and that for any ~�, there is a unique

stationary state psð ~�Þ satisfying Rps ¼ 0, with stationary

currents Jsijð ~�Þ ¼ Rijp
s
j � Rjip

s
i . If J

s
ijð ~�Þ ¼ 0 for all i, j,

then the dynamics are said to satisfy detailed balance, and
we interpret the stationary distribution to be the equilib-

rium distribution: psð ~�Þ ¼ peqð ~�Þ.
It will prove convenient to define a branching matrixQ,

obtained by rescaling each column of R: Qij ¼ Rij=jRjjj.
The diagonal elements of Q are all �1, and the off-
diagonal elements are branching fractions: when the sys-
tem makes a transition out of state j, then Qij is the

probability that the transition is into state i.
As an illustrative example, for which the dynamics

satisfy detailed balance, imagine thermally activated tran-
sitions between potential wells separated by energetic

barriers, with well depths Ejð ~�Þ and barrier energies

Bijð ~�Þ (Fig. 1). We then have ps
j ¼ peq

j / e��Ej , and tran-

sition rates take the familiar Arrhenius form [9,12] Rij ¼
k exp½��ðBij � EjÞ�, from which it follows that the

branching fractions depend on the barrier energies but
not on the well depths:

Qij ¼ e��Bij

�X
k�j

e��Bkj : (3)

We will use this result in our later analysis.
We will consider a process during which the system

evolves as the parameters are varied externally, ~� ¼ ~�t,

from ~�0 ¼ A to ~�� ¼ B. For a fixed but arbitrary pair of
states m, n, the integrated current, �mn �

R
�
0 dtJmnðtÞ,

represents the net transfer of probability from n to m.
This is a measure of the directed motion produced along
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this particular link in the network of states. We will show
that the integrated current is given by the compact expres-
sion,

�mn ¼
Z �

0
dt½Jsmnð ~�tÞ þ Vmnð ~�tÞ � _pðtÞ�; (4)

where the vector field Vmnð ~�Þ ¼ ðVmn;1; . . . ; Vmn;NÞ is

given by Eq. (10) below. Since in general we must integrate
Eq. (1) to obtain _pðtÞ, Eq. (4) is not a shortcut for calculat-
ing�mn. Rather, it provides a useful and nontrivial decom-
position of � into a stationary contribution, �s ¼ R

Jsdt,

due to a baseline current that flows even at fixed ~�, and the
remaining excess, or pumped contribution, �ex, due to the

redistribution of probabilities induced by the variation of ~�.
The latter is the contraction of a path pðtÞ along the field

Vmnð ~�Þ:

�ex
mn ¼

Z
Vmnð ~�tÞ � dpðtÞ: (5)

While Eq. (4) is valid quite generally, we note two con-
sequences that follow in particular situations.

(1) When ~� is varied slowly, the system remains near the

stationary state, pðtÞ � psð ~�tÞ. This suggests we replace

dp in Eq. (5) by d ~� � ~rps � P
�d��ð@ps=@��Þ [13], in

the adiabatic limit. With this replacement, which can be
justified by appeal to an adiabatic perturbation theory [14],
we get

�ex
mn ¼

Z B

A

~Amnð ~�Þ � d ~�; (6)

where ~Amnð ~�Þ � Vmn � ~rps. This expression is geometric:
time no longer appears here, and �ex

mn is simply a line

integral of ~Amn along a path in parameter space. Similar
geometric results have been obtained by Astumian for a
three-state system [9], and by Sinitsyn and Nemenman [8]
for open stochastic pumps.

(2) When R describes thermally activated (Arrhenius)
transitions over barriers, with parameter-dependent well

depths and barrier energies (Fig. 1), then we will show
that Eq. (4) leads to a surprising no-pumping theorem for
cyclic processes: �ex ¼ 0 if the well depths are varied
while the barrier energies are held fixed, or (trivially)
vice-versa. Only by varying both well depths and barrier
energies during a pumping cycle, can we generate a net
transfer of probability between states.
Equation (4) is derived by eliminating p from Eqs. (1)

and (2) to obtain JmnðtÞ ¼ Jsmn þ Vmn � _p. We now sketch
the steps of this derivation, skipping tedious but routine
linear-algebraic manipulations. The final results give Vmn

in terms of readily evaluated minors of the matrices R
[Eq. (10)] or Q [Eq. (11b)]. We note before proceeding
that there is a gauge freedom at play here: since

P
j _pj ¼ 0

by conservation of probability, Eq. (4) is unaffected by the

replacement Vmn ! Vmn þ fð ~�Þ1, where 1 � ð1; 1; . . . ; 1Þ
and f is an arbitrary function. Thus our results for Vmn are
not unique, merely convenient.
Equation (1) is a set of linear equations, which we label

ê1; . . . ; êN. Since detR ¼ 0, these are linearly dependent
(one of them is redundant) and R cannot be inverted to
solve for p in terms of _p. Specifically, for a given _p, if p

satisfies Eq. (1) then so does pð�Þ ¼ pþ �ps, for any value
of �. We remove this degeneracy by imposing the normal-
ization condition 1 � p ¼ 1, which we label ê0: replacing
êN by ê0 in Eq. (1), we get a set of linearly independent
equations

_p 0 ¼ R0p; (7)

where _p0 � ð _p1; . . . ; _pN�1; 1Þ, and R0 is obtained by
substituting the vector 1 for the Nth row of R. Since
detR0 � 0, we solve for p using Cramer’s rule [15]:

pj ¼ detR0
j= detR

0; (8)

whereR0
j is obtained fromR0 by replacing the jth column

by _p0. Expanding detR0
j along this column (for j ¼ m; n),

then substituting Eq. (8) into Eq. (2), we get

Jmn ¼ XN
k¼1

ð�1Þkð�mn;k � �nm;kÞ _p0
k: (9)

Here �ij;kð ~�Þ ¼ ð�1ÞjRijr
0
jðk; jÞ=r0, where r0 ¼ detR0,

and r0iða; bÞ denotes the ða;bÞ minor of R0
i, that is the

determinant of the matrix obtained by deleting row a and
column b of R0

i. Comparing Eq. (9) with the integrand in
Eq. (4), and recognizing that Jmn ¼ Jsmn when p ¼ ps (i.e.,
when _p ¼ 0), we obtain

Vmn;k ¼ ð�1Þkð1� �kNÞð�mn;k � �nm;kÞ; (10)

which gives Vmnð ~�Þ in terms of the elements of Rð ~�Þ.
Let us now separately analyze the case in which the

dynamics satisfy detailed balance, for all ~�. Recalling that

Eq. (1) supports a family of solutions, F ¼ fpð�Þ ¼ pþ
�psg, we note that if we formally replace p by pð�Þ in

Eq. (2), we obtain Jð�Þij ¼ Jij þ �Jsij. In general, Jð�Þij is not

E1 E2

E3

B13
B12

B23

Energy

Configuration

FIG. 1 (color online). A model stochastic pump satisfying
detailed balance. The particle makes thermal transitions among

three states with energies Ejð ~�Þ, over barriers with energies

Bijð ~�Þ. These are varied with time to induce currents.
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a physically meaningful quantity. However, if R satisfies
detailed balance, as we assume in this paragraph, then

Jsij ¼ 0, and therefore all solutions pð�Þ 2 F give the

same current, Jð�Þij ¼ Jij, upon substitution into Eq. (2).

We now exploit this observation: rather than solving for the
vector p 2 F that satisfies normalization (ê0), as done
above, we instead choose the vector �p 2 F that satisfies
�pm ¼ 0 (we label this condition ê00) and then we substitute
�p into Eq. (2) to determine Jmn. This approach leads to an
expression for Vmn that [unlike Eq. (10)] depends only on
the branching fractions Q and not on the transition rates
R. In detail, to solve for �p we break the degeneracy of
Eq. (1) by replacing êm with ê00 (rather than êN with ê0 as in
the previous paragraph). In lieu of Eq. (7) we now have
_p00 ¼ R00 �p, where _p00 ¼ ð _p1; . . . ; _pm�1; 0; _pmþ1; . . . ; _pNÞ,
and R00 is defined by replacing the mth row of R with
(0 . . . 010 . . . 0), where the 1 is on the diagonal. Now,
(1) using Cramer’s rule to solve for �p, then (2) taking
Jmn ¼ Rmn �pn (since �pm ¼ 0), and (3) recalling that Qij ¼
Rij=jRjjj, after some effort we obtain

�mn ¼
Z �

0
dtVmnð ~�tÞ � _pðtÞ (11a)

Vmn;k ¼ ð�1Þnþk�ð1� �mkÞQmnqðm; k;m; nÞ
qðm;mÞ : (11b)

Here qðm;mÞ is the ðm;mÞ minor of Q, and similarly
qðm; k;m; nÞ is the determinant obtained after deleting
rows m and k and columns m and n of Q; finally, � ¼
�1 if n < m< k or k < m< n, otherwise � ¼ þ1.

Now let us use Eq. (11) to establish a no-pumping
theorem pertaining to cyclic processes. We continue to

assume that Rð ~�Þ satisfies detailed balance for all ~�, and
we picture the dynamics as arising from thermally acti-
vated transitions over barriers, with externally controlled
well depths and barrier energies (Fig. 1). We now imagine

a process during which the parameters are held fixed at ~�A

prior to t ¼ 0; then during the interval 0 � t � T they are
made to trace out a closed loop in parameter space, after

which they are again held fixed at ~�A. In this scenario, from
the distant past to the distant future the vector pðtÞ also
evolves through a closed path, returning to its initial equi-

librium state: pð	1Þ ¼ peqð ~�AÞ. We are interested in the
integrated current, �mn ¼ Rþ1

�1 dtJmn during such a pro-

cess. Let us separately consider two cases. First, if only the
barrier energies (and not the well depths) are varied, then
the system simply remains in equilibrium at all times,

pðtÞ ¼ peqð ~�AÞ, and there are no currents. Now consider
the less obvious case in which the barrier energies are held
fixed, but nonzero currents JmnðtÞ are generated through a
cyclic variation of the well depths. Since Vmn is deter-
mined by the elements of Q [Eq. (11b)], which in turn
depend only on the fixed barrier energies [Eq. (3)],
Eq. (11a) becomes �mn ¼ Vmn

Rþ1
�1 dt _pðtÞ ¼ 0. Thus, in

order to generate nonzero integrated current during a cyclic

process, both well depths and barrier energies must be
varied.
This result extends to encompass repeated, periodic

cycling of the parameters, ~�ðtþ �Þ ¼ ~�ðtÞ, in which case
Floquet theory ensures that the system relaxes to a time-
periodic state, pðtþ �Þ ¼ pðtÞ [16]. The arguments of the
previous paragraph then apply to this periodic state: if the

barrier energies are held fixed, then Vmnð ~�tÞ is constant in
time, and therefore Eq. (11a) gives �mn ¼ 0 over one
period of driving.
We have just argued that all �mn’s vanish in a cyclic

process during which Q is fixed and detailed balance is
satisfied. It is of interest to count the number of constraints
represented by these conditions, and to compare this with
the general number of constraints needed to ensure absence
of directed flow. Assuming E links among our network of
N states, there are 2E nonzero branching fractions Qij.

Such a network can be decomposed into E� N þ 1 closed
loops, with each link belonging to at least one loop [17].
The 2E nonzero branching fractions are not independent:
conservation of probability imposes N conditions

P
iQij ¼

0 (j ¼ 1; � � � ; N), and detailed balance imposes an addi-
tional E� N þ 1 conditions, representing the absence of
thermodynamic force around each closed loop [18].
Therefore by choosing E� 1 specific branching fractions

to be ~� independent, we guarantee that the others will also

be ~� independent. On the other hand, we can ensure that all
�mn’s vanish by insisting that there be zero integrated
current around every closed loop in the network decom-
position. Since there are E� N þ 1 such loops, it is clear
that fixing the branching fractions (i.e., imposing E� 1
constraints) is not the most general condition for the ab-
sence of integrated flow. However, it is a simple condition,
which has the same leading order scaling for systems with
many states, assuming E / N2.
We now illustrate our results using a model system,

motivated by an experiment by Leigh et. al. [5] and ana-
lyzed in the adiabatic limit by Astumian [9]. We consider
thermally activated transitions among three states, depicted
by the wells in Fig. 1, with rates Rij ¼ k exp½��ðBij �
EjÞ�, and we will take k, � ¼ 1 to set the units of time

and energy. R satisfies detailed balance, but by varying
the well depths and barrier energies we can induce non-
zero currents. Recalling Eq. (3), and defining c 1 ¼
expð�B12 � B13Þ, c 2 ¼ expð�B12 � B23Þ, c 3 ¼
expð�B13 � B23Þ, and K ¼ P

jc j, we evaluate Eq. (11b)

for ðm; nÞ ¼ ð2; 1Þ to obtain

V 21 ¼ K�1ð�c 1 � c 2; 0;�c 1Þ ! K�1ð�c 2; c 1; 0Þ;
(12)

where in the last step we have used the gauge freedom
V21 ! V21 þ ðc 1=KÞ1.
When ~� is varied adiabatically around a closed path, the

pumped current is given by Eq. (6), with ~A21 ¼
ð�c 2

~rpeq
1 þ c 1

~rpeq
2 Þ=K. If the barrier energies are
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held fixed during this process, then c 1, c 2, and K are
constant; hence, the integrand is a total differential and
there is no pumped current, as predicted in Ref. [9].

Now let us analyze cyclic but nonadiabatic variation of
the well depths and barrier energies. We first consider a
process during which the barriers are held fixed.
Specifically, we take ðB12; B23; B13Þ ¼ ð�0:3; 0:5; 0Þ, and

EjðtÞ ¼ �2þ cos

�
2�

�
t

T
þ j� 1

3

��
; (13)

for 0< t < T ¼ 10. Thus the well depths EjðtÞ undergo
one cycle of pumping, with phases staggered by 2�=3 in a
pistonlike sequence. Outside this time interval all parame-
ters are fixed, so the system ultimately relaxes to its initial
equilibrium state. The solid line in Fig. 2 shows the inte-
grated current �21ð�Þ ¼

R
�
0 dtJ21ðtÞ, obtained by numeri-

cal integration of Eqs. (1) and (2). We see that probability
sloshes back and forth on the link between states 1 and 2:
initially there is a gentle flow from 1 to 2 (d�21=d� > 0 for
� & 2), then an interval of stronger current in the opposite
direction, followed by another reversal shortly before � ¼
7:5. The eventual decay of �21 to zero indicates a net
cancellation of these flows, as predicted by our no-
pumping result. We next consider a process during which
both well depths and barrier energies are varied with time:
the Ej’s are again driven according to Eq. (13), but now

each barrier moves in synchrony with the well to its
immediate right in Fig. 1; e.g., as E1 goes down and then
up, so does B13, so that their difference remains fixed at
B13 � E1 ¼ 2 ¼ B12 � E2 ¼ B23 � E3. The integrated
current �21ð�Þ is shown by the dashed line in Fig. 2; the
asymptotic value�21 � 0:1 reveals a net transfer of proba-
bility from state 1 to state 2 over the cycle. Note that in
both cases nonvanishing currents persist for some time
after � ¼ T, reflecting the decay to equilibrium that occurs
after the parameters stop being varied.

Our no-pumping theorem applies to a single particle
jumping among potential wells (Fig. 1). When more par-
ticles are present, and they interact with one another, the
general results of Eqs. (4), (10), and (11b) remain valid, but
now the roles of wells and barriers are played by many-

body energies. We then find nonzero cyclic currents even
when the single particle barriers are held fixed [14]. These
results are consistent with the experimental observation of
currents in 3- but not 2-catenanes [5]; these linked-ring
molecules are naturally modeled as two- or one-particle
systems, respectively, with the particle(s) jumping among
binding sites whose affinities are varied externally [9]. This
agreement suggests that the nonadiabatic framework de-
scribed in this Letter will prove useful in the design and
analysis of nanoscale stochastic pumps.
Recently, we have learned of a generalized no-pumping

theorem derived by Chernyak and Sinitsyn [19]. Their
results apply to systems satisfying detailed balance and
account for the topology of the network.
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FIG. 2 (color online). The integrated current �21 for nonadia-
batic cycles with fixed barriers (solid line) or varying barriers
(dashed line).
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