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We calculate the full I-V characteristics at vanishing temperature in the self-dual interacting resonant

level model in two ways. The first uses careful time dependent density matrix renormalization group with

a large number of states per block and a representation of the reservoirs as leads subjected to a chemical

potential. The other is based on integrability in the continuum limit, and generalizes early work by

Fendley, Ludwig, and Saleur on the boundary sine-Gordon model. The two approaches are in excellent

agreement, and uncover among other things a power law decay of the current at large voltages when

U > 0.
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Experimental investigation of transport phenomena in
quantum impurities is a rapidly expanding field. Typically,
tiny structures that behave quantum mechanically—i.e.,
whose level spacing is much larger than all other relevant
energy scales—are connected to metallic leads and a
source-drain voltage VSD across it forces a current to
flow. The nonequilibrium regime that ensues could be
achieved and measured for structures realized as quantum
dots in a 2D electron gas [1] or single molecules [2].

Unfortunately, the theoretical description of these sys-
tems remains, in spite of numerous efforts, somewhat less
advanced. One major obstacle is the lack of efficient
theoretical approaches to treat nonequilibrium situations
in the presence of strong interactions. On the analytical
side, perturbative (Keldysh) techniques are extremely dif-
ficult to carry out to high orders, while self-consistent
approximations are difficult to control in the strongly non-
linear regimes. Since impurity problems in the scaling limit
can be reformulated as 1D boundary field theories, it is
tantalizing to try to use the power of integrability. This was
done first in [3] where full I-V characteristics were calcu-
lated for the problem of edge-state tunneling in the frac-
tional quantum Hall effect. More recently, Mehta and
Andrei [4] have proposed a seemingly different approach
dubbed the open Bethe ansatz. They also cast doubt about
the results in [3] and their way of coupling the model to the
reservoirs. While the approach in [4] is a priori quite
general, it has not, so far, led to quantitative predictions
in the scaling limit because of technical difficulties.
Besides, since the cutoff in [4] is imposed via the Bethe
ansatz solution, the results cannot be directly compared
with those of lattice simulations.

In view of this confusing situation, it would be natural to
turn to numerical approaches. This is, however, just as
challenging. In simulating quantum transport one faces
the problem that the stationary Schrödinger equation is

replaced by the time dependent Schrödinger equation and
therefore an eigenvalue problem is replaced by a boundary
problem in time. An important consequence is that in
simulations in time (frequency) domain one has to send
first system size to infinity and then time to infinity (level
broadening or frequency to zero). Current numerics typi-
cally falls into two classes. Either one takes the limit of
switching on interaction last and starts from a noninteract-
ing description, where one can send the system size ana-
lytically to infinity, or one is using nonperturbative
methods on a finite lattice where the limit of time or
frequency is interchanged with the limit of system size.
Therefore numerical simulations for transport properties of
strongly interacting quantum systems are in general prone
to conceptual considerations.
We report in this Letter a double step forward. On the

one hand, we extend the approach of [3] to a special point
in the interacting resonant level model (IRLM), where we
are able to determine the full I-V characteristics at vanish-
ing temperature T. On the other hand, we carry out time
dependent density matrix renormalization group (TD-
DMRG) calculations, and fully confirm our Bethe ansatz
predictions in the scaling limit. The remarkable agreement
between analytical and numerical approaches strongly val-
idates both, hence dispelling doubts about the issues of
reservoir coupling in [3] as well as the feasibility of time
dependent DMRG. On top of this, the physics unraveled by
our calculations is highly nonperturbative and counterin-
tuitive and exhibits, among other things, regimes of nega-
tive differential conductance. We thus expect the IRLM
model to become a benchmark for other methods in the
field of interacting out of equilibrium transport.
We start with the numerical approach. We apply the TD-

DMRG method [5–9] to integrate an initial state of the
nanostructure H I attached to a left and a right noninter-
acting tight-binding lead H L
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H L ¼ �t
�Xx0�1

x¼2

þ XM
x¼x0þ2

�
ðĉyx ĉx�1 þ ĉyx�1ĉxÞ (1)

H I ¼ t0ĉyx0ðĉx0�1 þ ĉx0þ1Þ þ H:c:þUðn̂x0 � 1=2Þ
� ðn̂x0�1 þ n̂x0þ1 � 1Þ þ �dn̂x0 ; (2)

where t ¼ 1 is the hopping amplitude in the leads, M the
number of lattice sites, U the interaction on the contact
link, and �d an on site gate potential which is set to zero
(i.e., at resonance).

At time � ¼ 0 we include a voltage drop by applying a
potential VSD=2 (� VSD=2) on the left (right) lead which
we smoothly send to zero on a scale of three sites left and
right of the impurity. We then switch off the voltage in the

Hamiltonian and time evolve using ei@ðH LþH IÞ�. (Different
procedures to reach the stationary state could be consid-
ered. Wewill report on this elsewhere; see also [10]). Since
the leads act as a bath the simulation has to be stopped after
the transit time �t ¼ Llead=vF, where Llead is the leads’
length and vF ¼ 2t is the Fermi velocity of the noninter-
acting tight-binding leads, since for times larger than �t
one measures the influence of the boundaries and not the
steady state. In addition, since we are working with finite
leads, our system has a finite size gap which leads to finite
size induced cosðVSD�Þ oscillations. This is similar to the
oscillations in a Josephson junction which are induced by
the superconducting gap. By carefully checking for finite
size effects and ensuring to take enough states per block in
the DMRG procedure we can extract the current corre-
sponding to infinite leads; the details are explained in
[11,12].

In Fig. 1 we plot the current I versus applied source
drain voltage for a system with t0 ¼ 0:5 and �d ¼ 0, i.e., on

resonance. Most of the data were calculated using a 96 site
system and at least 2000 states per block. For comparison
we include a reference calculation for U ¼ 1:0 using 120
lattice sites and 3000 states per block. We applied typically
20–25 full TD-DMRG steps with a time step of �� ¼ 0:4
as described in [9]. We then switch to an adaptive time
evolution scheme as described in [8,12]. We would like to
remark that we perform the time evolution using a full
Arnoldi-type matrix exponential during the full and adap-
tive TD-DMRG sweeps without any Trotter-like approxi-
mation schemes.
Since free fermions provide a nontrivial test for (real

space) DMRG theU ¼ 0:0 results show that the procedure
is well defined and gives accurate results even for large
voltages. Switching on the interaction one observes in the
not too large VSD regime a broadening of the differential
conductance, while for large interaction the broadening is
absent and one obtains a shrinking of the resonance width.
This is similar to the linear conductance versus gate po-
tential as described in [13]. For large voltage a negative
differential conductance regime appears which is maximal
at U� 2:0 and disappears again for U ! 1. We note that
DMRG has a tendency to underestimate the current in the
large voltage regime if not enough states are kept, espe-
cially in the adaptive scheme.
In Fig. 2 we plot the I-V curves for t0 ¼ 0:2; 0:3; 0:4

where we rescaled the I and VSD axis in such a way that we
fit the data to our analytical result using a scale TB.
The points nicely sit on a single curve, which shows that

we are reasonably within the scaling limit. A numerical fit
of the power law decay for t0 ¼ 0:2 and U ¼ 2:0 gives an
exponent of 0.47. In the inset of Fig. 2 we show that the
numerically obtained TB scales are given by a TB � ðt0Þ4=3
power law.
Exponents for different values of U are represented on

Fig. 3. For all positive values of U we find a power law
decay of the current at large voltage, except for t0 ¼ 0:5
and U ¼ 0:3 where the crossover scale is beyond our
voltage regime. We also find that the exponent does not
vary monotonically with U, and reaches its maximum

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5  3

C
ur

re
nt

 I
 [

e/
h]

Voltage VSD [t/e]

U=0, Exact
U=0.0, I 1
U=0.0, I 2
U=0.3, I 1
U=0.3, I 2

U=1.0, I 1
U=1.0, I 2
U=5.0, I 1
U=5.0, I 2
U=-1.0, I 1

U=-1.0, I2
U=10, I1
U=10, I2
M=120
NCut =3000

U=0.0

U=0.3

U=1.0

U=5.0

U=-1.0

U=10.0

FIG. 1 (color online). Current versus source drain voltage VSD

for a hybridization of t0 ¼ 0:5, and interaction values of U ¼
�1:0, 0.0, 0.3, 1.0, 5.0, and 10.0. The subscript ‘‘1’’ (‘‘2’’) of I
refers to data extrapolated from link to the left (right) lead. The
lines are guides to the eye, except for U ¼ 0:0 where we plotted
the exact result for infinite leads. Calculations have been per-
formed with 96 sites, 48 fermions keeping at least 2000 states per
DMRG block. In addition, data for U ¼ 1:0, M ¼ 120 sites and
Ncut ¼ 3000 states per block are shown.
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FIG. 2 (color online). Comparison between analytical and
DMRG results at the self-dual point. The numerical data have
been fitted using a single parameter TB ¼ cðt0Þ4=3, c � 2:7.
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aroundU ¼ 2where it is very close to 1=2, and approaches
1=2 when lowering t0, i.e., in the scaling limit.

We now turn to a study of the model in the continuum
limit. It is convenient to first unfold the left and right leads,

obtaining in this wayH L ¼ �iPa¼1;2

R
dx y

a@x a a free
Hamiltonian describing two infinite right moving Fermi
wires, and

H I ¼ t0cð 1ð0Þ þ  2ð0ÞÞdy þ H:c:þUcð: y
1 1ð0Þ:

þ : y
2 2ð0Þ:Þ

�
dyd� 1

2

�
þ �dd

yd: (3)

In the following, we focus again on the resonant case, i.e.,
�d ¼ 0. Note that in (3) the Coulomb interaction involves
normal ordered charge density on the dot, as in (2). The
subscript ’’c’’ indicates that the precise relationship be-
tween the lattice and continuum limit parameters depends
on the regularization scheme.

We switch to the language of the anisotropic Kondo
model by representing the impurity degree of freedom by
a spin one-half, dy ¼ �Sþ, Sz ¼ dyd� 1

2 , with � a
Majorana fermion. The fermions in the wires are bosonized

as  a ¼ �affiffiffiffiffi
2�

p ei
ffiffiffiffiffi
4�

p
’a . We then introduce new bosonic fields

’c ¼ ð’1 þ ’2Þ=
ffiffiffi
2

p
and � ¼ ð’1 � ’2Þ=

ffiffiffi
2

p
, that repre-

sent the total and relative charge in the wires, respectively.

The unitary transform U ¼ expði� ffiffiffi
2

p
Sz’cð0ÞÞ is then

applied. Choosing � ¼ Uc=
ffiffiffiffi
�

p
to cancel the boundary

interaction along Sz, we arrive at

H ¼ H 0ð’cÞ þH 0ð�Þ þH I; (4)

where H 0ðXÞ ¼
R1
�1 dxð@xXÞ2 is the Hamiltonian of a

free (chiral) boson, and the piece involving the impurity

degrees of freedom is H I ¼ t0cffiffiffiffiffi
2�

p ½V ð0ÞOð0ÞSþ þ H:c:�,
with V ¼ ei�c’c , O ¼ �1e

i
ffiffiffiffiffi
2�

p
� þ �2e

�i ffiffiffiffiffi2�
p

�, and �a ¼
��a. The exponent of the vertex operator is �c ¼ffiffiffiffiffiffiffi
2�

p ð1� Uc

� Þ. We note that there is a special value of the

Coulombic repulsion (Uc ¼ � in our scheme) where a
remarkable simplification occurs: this exponent vanishes,
and the field ’c decouples from the impurity. At this point,
and this provides a universal characterization thereof, the

anomalous dimension of the boundary perturbation D ¼
1
4 þ ð12 � Uc

2�Þ2 reaches its minimum value D ¼ 1
4 . At this

point, the model exhibits a certain self-duality [14].

Although we do not have full analytical solutions for
general values of Uc, some qualitative results can easily be
obtained. First, we expect that, provided Uc > 0, the cur-
rent vanishes at large voltages like a power law I0ðVÞ �
V�b
SD , b ¼ 1� 2D, D the scaling dimension of the pertur-

bation (this conclusion was reached in discussions with
Doyon [15]). From the foregoing discussion this leads to an

exponent b ¼ 1
2
Uc

� ð2� Uc
� Þ. We emphasize that this only

holds in our regularization scheme. The numerical values
of Uc where b reaches its maximum and where b vanishes
do not have to be the ones observed in the lattice model; in
particular,Uc ¼ 2� for us corresponds presumably toU ¼
1 where it can be argued that the model is equivalent to
U ¼ 0. Nevertheless, it is usually expected that different
regularizations do not change the qualitative nature of the
results. The prediction for the exponent is indeed in full
agreement with numerics and the curve on Fig. 3. We see,
in particular, that the exponent b does exhibit maximum
value at b ¼ 1

2 where D ¼ 1
4 by scaling. This allows us to

identify the self-dual point in the continuum limit with the
valueU � 2 in the lattice model. We shall now see that this
self-dual point is also amenable by the Bethe ansatz.
The IRLM in equilibrium is solvable: the corresponding

basis of the Hilbert space provides quasiparticle excitations
which scatter diagonally (i.e., without particle production)
across the impurity. In general however, the operator en-

forcing the voltage drop across the impurity VSD

2 �R
dxð y

1 1 �  y
2 2Þ � VSD

2 Q is not diagonal in the quasi-

particle basis. This makes the construction of exact scat-
tering states along the lines of [3] a seemingly impossible
task. At the special value of the coupling Uc ¼ �, how-
ever, things simplify drastically. The Hamiltonian can be
mapped onto the boundary sine-Gordon theory for the field
� after folding across the impurity (it can be shown that the
cocycles can be discarded at this stage). This theory is
known to be integrable, and leads to a description in terms
of solitons, antisolitons, and two kinds of breathers. The

charge Q ¼
ffiffiffi
2
�

q R
@x� is not conserved by the interaction,

but acts diagonally on the quasiparticle basis. Following
the arguments in [3] this allows for an exact calculation of
the nonequilibrium current at all values of T and voltage
for the IRLM at Uc ¼ �. We will simply give here the
result at T ¼ 0.
In this case, the in state involves one type of quasipar-

ticle—for VSD > 0, say, it is the antisolitons. We parame-
trize their energy (equal to the momentum) as p ¼ m

2 e
	

where m is an arbitrary mass scale and 	 the rapidity. The
antisoliton filling fraction thus reads f�ð	Þ ¼ �ðA� 	Þ
(� is the Heaviside function), A being a rapidity cutoff.
Defining 
 ¼ nf�, where n is the density of allowed states
per unit of length and rapidity, the current reads (we use
units in which e ¼ @ ¼ 1)

I ¼ 2
Z A

�1
d	


ð	Þ
1þ e6ð	�	BÞ

: (5)
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FIG. 3 (color online). Exponents in the negative differential
conductance regime for t0 ¼ 0:2, 0.3, 0.4, and 0.5.
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Here, 	B is a rapidity encoding the crossover energy scale

in the problem TB ¼ m
2 e

	B . From scaling, TB / ðt0cÞ4=3.
Like for the Kondo temperature, different ways of defining
TB are possible. We follow here the definition given in [16],
which is related to universal coefficients in the low-T
expansion of the linear conductance; we will not need it
in the following anyway. The density n—or equivalently

—follows from nontrivial Bethe ansatz quantization rules
which involve the antisoliton-antisoliton scattering matrix.
The Wiener Hopf technique allows one to obtain the
Fourier transform ~
ð!Þ ¼ R

A
�1 d	e

i!	
ð	Þ in closed
form. One finds (see Ref. [17]):

~
ð!Þ ¼ m

4�

Gð!ÞGð�iÞ
1þ i!

eð1þi!ÞA (6)

withGð!Þ ¼ ffiffiffiffiffiffiffi
8�

p
�ð2i!=3Þ

�ði!=6Þ�½ð1þi!Þ=2� e
i!� and e� ¼

ffiffi
3

p
42=3

. The

relation between the cutoff A and the applied voltage can
be expressed through the Fermi momentum pF ¼ m

2 e
A ¼

21=3

31=2
�ð1=6Þ
�ð2=3Þ

VSD

2
ffiffiffi
�

p . Power expanding the denominator of the

integrand in (5) yields an explicit series representation

with natural expansion variable �VSD ¼ �ð1=6Þ
4
ffiffiffi
�

p
�ð2=3Þ

VSD

TB
[17].

Depending on whether �VSD is small or large one has

I0ðVSDÞ ¼
�VSD<e

�
VSD

X
n�0

ð�1Þn
4

ffiffiffiffi
�

p ð4nÞ!
n!�½3ðnþ 1

2Þ�
�V6n
SD (7)

I0ðVSDÞ ¼
�VSD>e

�
VSD

X
n>0

ð�1Þnþ1

4
ffiffiffiffi
�

p �ð1þ n
4Þ

n!�ð32 � 3n
4 Þ

�V�ð3n=2Þ
SD : (8)

For comparison, recall that in the free fermion case

(U ¼ Uc ¼ 0) one has I0ðVSDÞ ¼ TB
� A tanðVSD

2TB
Þ. We see in

(7) and (8) that I0=TB is a function of �VSD only, so that
matching the numerical results in the scaling limit requires
a single common rescaling of I and VSD. The T ¼ 0 current
is depicted in Fig. 2 (solid line). It decays as a power law at

large voltage, I0 ’ 33=4

8�
�ð2=3Þ9=2
�ð3=4Þ2 T

3=2
B V�1=2

SD .

We can understand more precisely the origin of the large
VSD decrease of the current by looking at the nonequilib-
rium density of states for antisolitons: 
ðpÞ ¼ F
ð ppFÞ �
�ðpF � pÞ with F
ðxÞ ¼ 3

8�2
�ð2=3Þ
�ð1=6Þ

P
n�0

ð�Þn
ð2nþ1Þ! �ð2mþ5

4 Þ �
�ð6mþ1

4 Þð x
e�
Þ6mþ1=2. At small momentum p	 VSD—where

the resonance (of width TB) forms—the density of states

vanishes as a power law, 
ðpÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=VSD

p
: this depletion of

the sea close to zero energy results in an extinction of the
current. The situation is clearly contrasted to what happens
in a free theory (U ¼ 0), where the density of states is
constant provided p < pF ¼ VSD.

We note that the formula bðUcÞ suggests a power law
divergence of the current at large voltage in the scaling
regime forUc < 0. This seems confirmed by our numerics.

In conclusion our work provides what may be the first
example of transport properties in an interacting one-
dimensional system out of equilibrium that can be calcu-
lated both analytically and numerically, with excellent

agreement between the two approaches. This should pro-
vide a most useful benchmark for the variety of other
approaches being currently proposed. Our results exhibit
remarkable physics: the negative differential conductance
at large voltage seems a truly nonperturbative behavior,
with unclear physical origin: a possible explanation could
be that once we are in the tail of the conductance curve a
voltage drop at the impurity builds up since differential
conductance is now smaller than unity. This voltage drop
may destroy the interaction based renormalization of the
conductance enhancement.
The IRLM provides a perfect laboratory to explore other

challenging questions, such as the zero frequency shot
noise, or the effect of coupling of the baths on the sta-
tionary properties. We hope to get back to these soon.
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