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A basic question regarding quantum entangled states is whether one can be probabilistically converted

to another through local operations and classical communication exclusively. While the answer for

bipartite systems is known, we show that for tripartite systems, this question encodes some of the most

challenging open problems in mathematics and computer science. In particular, we show that there is no

easy general criterion to determine the feasibility, and in fact, the problem is NP hard. In addition, we find

obtaining the most efficient algorithm for matrix multiplication to be precisely equivalent to determining

the maximum rate to convert the Greenberger-Horne-Zeilinger state to a triangular distribution of three

EPR states. Our results are based on connections between multipartite entanglement and tensor rank (also

called Schmidt rank), a key concept in algebraic complexity theory.
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One of the greatest discoveries in quantum physics [1] is
that a multipartite quantum system can be in a so-called
entangled state. There is an uncountable number of en-
tangled states realizable by any quantum system, and a
natural question is whether two given states can be con-
verted to each other through local operations and classical
communications (LOCC), i.e., a protocol in which no
quantum information is exchanged among the subsystems.

As the notion of probability is inherent to quantum
mechanics, the more natural question is with what proba-
bility p can j�i be converted into j i under LOCC. For
p ¼ 1, the LOCC transformation is called deterministic,
and for a general nonzero p, the protocol is called stochas-
tic (SLOCC). Transformations of the latter form are written

as j�i ���!SLOCC j i. For bipartite systems, the problem is com-
pletely solved. Nielsen has provided necessary and suffi-
cient conditions for whether two states are deterministi-
cally convertible [2]. Probabilistically, any bipartite state
j�i can be transformed into j i if and only if the matrix
rank of the reduced density operator of j�i is greater than
that of j i. Furthermore, Vidal [3] has derived a simple
formula that gives the optimal probability for conversion.

When the number of subsystems is greater than 2, the
situation becomes much more complicated. No longer can
SLOCC convertibility be determined by examining the
ranks of the reduced density matrices of the initial and
final states. For example, a system of three qubits can be
partitioned into six equivalence classes defined by SLOCC
convertibility between states in the same class [4]. How-
ever, the Greenberger-Horne-Zeilinger (GHZ) and W
states, jGHZi ¼ 1ffiffi

2
p ðj000i þ j111iÞ and jWi ¼ 1ffiffi

3
p ðj001i þ

j010i þ j100iÞ, represent two states of distinct SLOCC
classes despite having the same subsystem density matrix
ranks. Likewise for four qubit systems, there exists nine

different families of equivalence classes indistinguishable
by density matrix ranks alone [5].
In this Letter, we ask whether there is some relatively

simple criterion for determining the convertibility of arbi-
trary tripartite states like there is for bipartite states. As a
complete solution to the convertibility problem should be
able to determine whether one state can be transformed
into another with a nonzero probability, we focus our
attention on the class of SLOCC protocols to judge the
difficulty of the complete problem. Ultimately we find that
no simple criterion exists for testing the possibility of a
general tripartite entanglement transformation. In addition,
through the course of investigating this problem, many
other interesting results are obtained concerning specific
tripartite transformation rates. The novel conversion rates
are derived in part from our observation that the Schmidt
measure (to be defined below) is not an additive quantity,
something previously thought to be true in the quantum
information community [6], but a result already acknowl-
edged in algebraic complexity theory (see exercise 14.12 of
[7]). We now summarize our main findings.
Denote by j�3i the unnormalized tripartite state

where any two parties share an (unnormalized) EPR
state j�i ¼ j00i þ j11i, i.e., j�3i ¼ j�iABj�iACj�iBC ¼P

1
i;j;k¼0 jijiAjikiBjjkiC. The following statements are true.

Theorem 1.—(a) The following problem is NP hard:
Given the classical description (e.g., a binary encoding)

of two tripartite states j�i and j i, decide if j�i ���!SLOCC

j i. (b) jGHZi�3 ���!SLOCC jWi�2. (c) jGHZi�17 ���!SLOCC

j�3i�6. (d) Let � ¼ inffu: jGHZi�bunc ���!SLOCC j�3i�n
for sufficiently large ng. Then � is precisely the exponent
for matrix multiplication, i.e., the smallest real number !
such that two N by N matrices can be multiplied with
OðN!Þ number of multiplications between linear functions
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on entries of the first matrix and linear functions on entries
of the second matrix.

Previously, only one copy of the W state is known to be
convertible from three copies of GHZ and result (b) pro-
vides an improvement to this rate. Transformation (c) is
important because it reveals that the three-party EPR ex-
traction rate from GHZ is greater than 1, a previously
unknown possibility.

Our main technical tool is tensor rank, a key concept in
algebraic complexity theory [7] that has also been used to
measure multipartite entanglement under the synonymous
names of Schmidt rank and Schmidt measure [6]. The
tensor rank of a multipartite state j�i 2 H1 �H2 � � � � �
Hn, denoted by rkðj�iÞ, is the minimum number r such
that there exists j�jii 2 Hi, 1 � j � r, and

j�i ¼ Xr
j¼1

On
i¼1

j�jii:

The quantity log2ðrkðj�iÞÞ is called the Schmidt measure
of j�i, denoted by schðj�iÞ. As emphasized, the proof of
Theorem 1 depends on the nonadditivity of the Schmidt
measure, i.e., schðj�i � j iÞ � schðj�iÞ þ schðj iÞ.

Tensor rank has been used in algebraic complexity
theory as it captures the complexity of computing a set
of bilinear maps [7] and, in particular, the multiplicative
complexity of multiplying two matrices. A set of bilinear
maps are polynomials with respect to two distinct groups
of indeterminates. The multiplicative complexity of the set
is the minimum number of multiplications between the two
groups required to evaluate all the polynomials. The multi-
plication of two N � N matrices produces a set of N2

bilinear maps, one for each entry in the N � N product.
The complexity of N � N matrix multiplication is denoted
by �ðN;NÞ, and the current best upper and lower bounds
for �ðN;NÞ are OðN2:36Þ and 5

2N
2 � 3N, respectively

[8,9]. The complexity of matrix multiplication is also ex-
pressed as �ðN;NÞ ¼ OðN!Þ, where ! is called the expo-
nent for matrix multiplication and defined as the smallest
real number such that an algorithm exists for multiplying
two N � N matrices using OðN!Þ multiplications. While
! is hypothesized to be 2, determining the validity of this
conjecture is a major open problem in computational sci-
ence; this implies the difficulty in determining � of (d). For
more details, a good reference is Chap. 28 of [10].

Tensor rank analysis has already shown to be valuable in
quantum information as it is the distinguishing property
between the jGHZi and jWi equivalence classes of three
qubits [4,11]. It has also been useful in characterizing the
entanglement in graph states [12] as well as studying the
distinguishability of states by separable operations [13].
An important property of the tensor rank is that it cannot
increase under SLOCC.

Proposition 1.—If j�i ���!SLOCC j i, then rkðj�iÞ � rkðj iÞ
[14].

Through Proposition 1, the monotonic nature of the
tensor rank makes studying it physically worthwhile.

Unfortunately, determining the rank of an arbitrary state
is a very difficult problem [15], which is ultimately why
there is no simple convertibility test applicable to all
tripartite transformations. However, in some special cases
it is possible to calculate the tensor rank or at least deter-
mine some useful bounds. In this Letter, we establish our
main results described above by examining the ranks of
certain tripartite states. The following statements are true
where each is in a one-to-one correspondence with the
main results stated earlier.
Lemma 1.—(a0) j�i 2 HA �HB �HC can be SLOCC

converted from state 1ffiffiffi
N

p P
N
i¼1 jiiAjiiBjiiC if and only if

rkðj�iÞ � N. (b0) rkðjWi�2Þ � 8. (c0) rkðj�3iÞ ¼ 7.
(d0) rkðj�3i�nÞ is the multiplicative complexity for multi-
plying two 2n � 2n matrices.
Extending Lemma 1 to prove Theorem 1 is straightfor-

ward. It follows from item (a0) that, given a tripartite tensor
j�i and a number k, deciding if rkðj�iÞ � k can be re-

duced to the question of whether
P
k
i¼1 jiiAjiiBjiiC ���!SLOCC

j�i. The former problem is shown to be NP hard by
Håstad [15]; thus, the latter is also NP hard [item (a)].
Results (b), (c), and (d) follow directly from applying

(a0) to (b0), (c0), and (d0), respectively, and using the fact
that rkðjGHZi�nÞ ¼ 2n. This equality holds since, as evi-
dent by taking a Schmidt decomposition with respect to
any bipartition, the tensor rank is always lower bounded by
the density matrix rank of any subsystem, which is 2n for
all parties in jGHZi�n. The 17 to 6 conversion ratio of (c0)
is important because 6 copies of j�3i is a total of 18 EPR
pairs. Thus, the stochastic EPR distillation rate from mul-
tiple copies of jGHZi is greater than 1. In fact, (d) shows
that this rate can be further improved as the upper bound
for! is lowered. However, the distillation is specific in that
the EPR pairs must be shared among all three parties.
Indeed, if the EPR pairs are held by just two parties,
rkðj�i�nÞ ¼ 2n so the EPR distillation rate from n copies
of jGHZi equals 1. The related problem of EPR distillation
from the W state has recently been studied in [16]. There,
the authors show that for a singleW state, the probability of
extracting an EPR state via LOCC is not only higher if one
does not specify which two parties share the state, but it can
also be made arbitrarily close to 1.
From (d) and the lower bound on �ð2n; 2nÞ, it follows

that 2n copies of GHZ cannot be converted into n copies of
j�3iwith a nonzero probability. This result is stronger than
the one derived in [17] where the authors prove strictly by
entropy arguments the impossibility of jGHZi�2n !
j�3i�n under deterministic LOCC. Here, we obtain the
stronger conclusion except by using tools of algebraic
complexity theory. It is an interesting question whether
these two seemingly unrelated lines of attack are actually
deeply connected.
Now we turn to prove Lemma 1. We will work with

unnormalized states below since any overall factor does
not affect the tensor rank. For any j�i 2 HA �HB �HC,
let �AB denote Alice and Bob’s subsystem obtained by
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taking the partial trace TrCðj�ih�jÞ. As �AB is a positive
operator, it has a spectral decomposition �AB ¼P
m
k¼1 pkj kih kj where 0<pk � 1. The vector span of

fj ki: 1 � k � mg is called the support of �AB and denoted
by suppð�ABÞ. To proceed, we need the following simple
equivalent characterization of a tripartite state’s tensor
rank.

Lemma 2.—Suppose j�i 2 HA �HB �HC. The tensor
rank of j�i equals the minimum number of product states
in HA �HB whose linear span contains the support of
�AB ¼ TrCðj�ih�jÞ.

Proof.—Let k denote rkðj�iÞ and r be the minimum
number of product states fj�jij�ji: 1 � j � rg whose

span contains suppð�ABÞ. Let j�i ¼
P
m
i¼1 jiiABjiiC be a

Schmidt decomposition of j�i. Each jiiAB belongs to
suppð�ABÞ and so jiiAB ¼ P

r
j¼1 �i;jj�jij�ji. Regrouping

the jiiC according to the r product states gives r � k.
However, from j�i ¼ P

k
i¼1 jaiijbiijcii we have �AB ¼P

k
i;j¼1 jaiijbiihcjjciihajjhbjj implying that suppð�ABÞ �

spanfjaiijbii: 1 � i � kg. Thus k � r. h
Using Lemma 2, the general procedure for determining

tensor rank is now straightforward. Write j�i ¼P
m
i¼1 jiiABjiiC where the fjiiC: 1 � i � mg are orthonor-

mal and then determine the minimum number of product
states needed to contain the fjiiAB: 1 � i � mg. This ques-
tion can be rephrased in another way by mapping each
jiiAB to a bilinear form fi from the ring of indeterminates
C½fajg; fbjg� where each aj (bj) is in a one-to-one corre-

spondence with a basis vector fromHa (Hb). Product states
in Ha �Hb correspond to a product of linear forms from
C½fajg� � C½fbjg�, which we refer to as a nonscalar multi-

plication. Thus, we obtain the following fact.
Fact.—The minimum number of product states that

contain the fjiiAB: 1 � i � mg, and hence the tensor rank
of j�i, is the same number of nonscalar multiplications
Mk ¼ ðPna

j¼1 �k;jajÞ � ðPnb
j¼1 �k;jbjÞ needed to calculate

the ffi: 1 � i � mg. We now use the technique outlined
above to study the tensor rank of certain tripartite states.
Proof of Lemma 1.—(a0) For

P
N
i¼1 jiiAjiiBjiiC, the sup-

port of �AB is spanned by N product states. Thus by
Proposition 1 and Lemma 2, a necessary condition for
the given transformation is rkðj�iÞ � N. Now suppose
that j�i ¼ P

k
i¼1 jaiijbiijcii where k � N. Since fjiiA: 1 �

i � Ng is an orthonormal set, we can define the linear
operator A by

AjiiA ¼
� jaii; 1 � i � k
0; k < i � N

:

Similarly, operators B and C can be constructed. As
noted in [4], the existence of such operators is suffi-
cient for an SLOCC protocol since j�i will be ob-
tained when Alice performs the local measurement

fA=kAk;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IA � ð1=kAk2ÞAyA

q
g and similarly for Bob and

Charlie. Note that (unnormalized) jGHZi�n can be ex-
pressed as

P
2n

i¼1 jiiAjiiBjiiC. (b0) One can verify by direct
computation that jWi�2 expands as
ðj11iAj00iB þ j10iAj01iB þ j01iAj10iB
þ j00iAj11iBÞj00iC þ ðj10iAj00iB þ j00iAj10iBÞj01iC
þ ðj01iAj00iB þ j00iAj01iBÞj10iC þ ðj00iAj00iBÞj11iC:

(1)

The structure of jWi�2 becomes more manageable when
working with its corresponding bilinears fi since they can
be succinctly expressed through the matrix multiplication

f00
f01
f10
f11

0
BBB@

1
CCCA ¼

a11 a10 a01 a00
a10 � � � a00 � � �
a01 a00 � � � � � �
a00 � � � � � � � � �

0
BBB@

1
CCCA

b00
b01
b10
b11

0
BBB@

1
CCCA;

where a ‘‘� � �’’ means a 0 entry. We make use of the
following identity [18]:

a11 a10 a01 a00
a10 � � � a00 � � �
a01 a00 � � � � � �
a00 � � � � � � � � �

0
BBB@

1
CCCA ¼

a10 a10 � � � � � �
a10 a10 � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

0
BBB@

1
CCCAþ

a01 � � � a01 � � �
� � � � � � � � � � � �
a01 � � � a01 � � �
� � � � � � � � � � � �

0
BBB@

1
CCCAþ

a00 � � � � � � a00
� � � � � � � � � � � �
� � � � � � � � � � � �
a00 � � � � � � a00

0
BBB@

1
CCCA

þ
� � � � � � � � � � � �
� � � a00 a00 � � �
� � � a00 a00 � � �
� � � � � � � � � � � �

0
BBB@

1
CCCAþ

a11 � a10 � � � � � � � � �
�a01 � a00 � � � � � � � � �

� � � �a10 � a00 � � � � � �
� � � � � � �a01 � a00 � � �
� � � � � � � � � �a00

0
BBBBB@

1
CCCCCA: (2)

Note that rank one matrices require only one nonscalar
multiplication:

ai ai
ai ai

� �
b1
b2

� �
¼ aiðb1 þ b2Þ

aiðb1 þ b2Þ
� �

;

while any n�n diagonal matrix requires nmultiplications:

�1

�2

�3

�4

0
BBB@

1
CCCA

b1
b2
b3
b4

0
BBB@

1
CCCA ¼

�1b1
�2b2
�3b3
�4b4

0
BBB@

1
CCCA:

Hence, a total of eight nonscalar multiplications is suffi-
cient to compute each fi. These multiplications correspond
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to product states that contain suppðTrCðjWihWj�2ÞÞ. By
Lemma 2 then, rkðjWi�2Þ � 8. In fact, expansion (2) gives
the eight product states that contain suppðTrCðjWihWj�2ÞÞ
enabling us to rewrite Alice and Bob’s vector attached to
jiiC: i 2 f00; 01; 10; 11g in (1) as a combination of these
eight states. Doing so gives the unnormalized decomposi-
tion

jWi�2 ¼ j10ij0þij0þi þ j01ij þ 0ij þ 0i þ j00ij�ij�i
þ j00ij�ij�i � ðj��i þ j�iÞj00ij00i
� jþ0ij01ij01i � j0þij10ij10i � j00ij11ij11i;

where j��i ¼ j00i � j11i and j�i ¼ j01i þ j10i. (c0) The
corresponding bilinear forms of j�3i match the set of
polynomials obtained when multiplying two 2� 2 matri-
ces:

a00 a01

a10 a11

 !
T b00 b01
b10 b11

� �
¼ f00 f01

f10 f11

� �
; (3)

where T indicates the matrix transpose. An algorithm for
obtaining the fi using only seven multiplications was dis-
covered by Strassen [19] and later proven to be optimal by
Winograd [20]. These seven nonscalar multiplications cor-
respond to a minimum number of product states containing
suppðTrCðj�3ih�3jÞÞ and so rkðj�3iÞ ¼ 7. As an eight
term expansion for jWi�2 was obtained from expansion
(2), it is straightforward to find a seven term expansion of
j�3i from Strassen’s algorithm given in [19]. Since the
explicit expressions are not of primary interest here, we
omit the calculations. (d0) By taking multiple tensor prod-
ucts of the matrices in (3), we see that for n copies of j�3i,
the corresponding polynomials are represented by 2n � 2n

matrix multiplication. Hence, rkðj�3i�nÞ is the complexity
of this operation. h

In conclusion, we have found that no easy test exists for
determining whether two general tripartite states are prob-
abilistically convertible because any general solution in-
volves tripartite tensor rank computation. As a result, one
must consider tripartite transformations on a case-by-case
basis. In this Letter specific tensor rank analysis has led to
an improved GHZ state to W state SLOCC transformation
rate as well as a demonstration of obtaining EPR pairs from
GHZ states at a rate greater than one with a nonzero
probability.

The connection between tensor rank and entanglement
transformation opens many avenues of further research as
the techniques of algebraic complexity theory might teach
us more about the nature and limitations of SLOCC trans-
formations. Conversely, SLOCC entanglement transforma-
tions may provide a unique angle to investigate algebraic
complexity theory. For example, can we improve the cur-
rent best matrix multiplication algorithm by constructing
an efficient SLOCC transformation protocol? Another spe-
cific problem is to prove strong impossibility results on the
GHZ to EPR conversion problem within a hierarchy of

SLOCC protocols (e.g., restricting the number of rounds of
messages). Such results will shed light on the difficulty of
matrix multiplication and may lead to a strong lower bound
on !. Finally, we note that [21] provides another connec-
tion of algebraic complexity theory to quantum informa-
tion. It would be of great interest to broaden the link
between these fields.
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