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Based on the monogamy of entanglement, we develop the technique of quantum conditioning to build

an additive entanglement measure: the conditional entanglement of mutual information. Its operational

meaning is elaborated to be the minimal net ‘‘flow of qubits’’ in the process of partial state merging. The

result and conclusion can also be generalized to multipartite entanglement cases.
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Entanglement, as a key resource and ingredient in quan-
tum information and computation as well as communica-
tion, plays a crucial role in quantum information theory. It
is necessary to quantify entanglement from different stand-
points. A number of entanglement measures have been
proposed, and their properties have been explored exten-
sively (see, e.g., Refs. [1,2], and references therein).
Nevertheless several questions still remain unanswered,
especially the following. (i) How to systematically intro-
duce new entanglement measures. It is commonly accepted
that an appropriate entanglement measure is necessarily
nonincreasing under local operations and classical com-
munication (LOCC). But few approaches to construct en-
tanglement measures are known. For example, the
entanglement of formation Ef [3] is established via the

technique of ‘‘convex roof,’’ and the relative entropy of
entanglement Er [4] is based on a concept of ‘‘distance.’’
(ii) The operational meaning. Entanglement measures are
largely studied by the monotonicity under LOCC opera-
tions, but little is known for the operational meaning except
the distillable entanglement Ed [3] and entanglement of
cost Ec [5]. Just recently, a new paradigm to explain
entanglement measures was proposed based on quantum
communication [6], where squashed entanglement Esq [7]

obtains its meaning. (iii) Additivity. It is a very desirable
property that can largely reduce computation of entangle-
ment. Since quantum mechanics is statistical, often opera-
tional meaning of entanglement measures is acquired only
in an asymptotic regime of many copies of a given state.
For additive measures, it is reduced to a single copy.
Additivity holds for squashed entanglement Esq [7] and

logarithmic negativity EN [8,9] and is conjectured to hold
for Ef, but Er is nonadditive [10]. (iv) Multipartite entan-

glement. It is more difficult to design multipartite entan-
glement measures; hence, it would be good if a bipartite
one can be easily extended to multipartite regime.

In this Letter, based on the monogamy of entanglement,
we develop the technique of quantum conditioning of a
correlation function to construct entanglement measures.
Taking the quantum mutual information as the correlation
function, we formulate a new entanglement measure—the
conditional entanglement of mutual information. Remark-
ably, it is additive with an operational meaning and can
straightforwardly be generalized to multipartite cases.
Let us begin with the question of how to build an

entanglement measure. The monogamy of entanglement
[11] is a good starting point. It tells us that entanglement is
a type of quantum correlation that cannot be shared. This
feature is distinct from the classical correlation that can be

shared. A simple example is the Bell state j�iAB ¼
1=

ffiffiffi
2

p ðj00i þ j11i between Alice and Bob. Monogamy of
the pure entangled state j�iAB excludes the possibility that
any other party could correlate with it. It is different for the
classical correlated state �AB ¼ 1=2ðj00ih00j þ j11ih11jÞ.
Obviously, another party Charlie can share the correlation
with the form �ABC ¼ 1=2ðj000ih000j þ j111ih111jÞ. The
example is the extremal case in which the quantum corre-
lation and the classical one are well separated. However, it
is not the case for a generic mixed state. A correlation
function fðA:BÞ [12,13], for instance, quantum mutual
information, usually contains a quantum correlation and
a classical one and is ‘‘dirty’’ in the sense that the quantum
correlation and the classical one are interwound in a com-
plex way that cannot be separated neatly. How can we
‘‘distill’’ a ‘‘neat’’ quantum correlation? The technique is
quantum extension and quantum conditioning. Quantum
extension means that, given a state �AB, we embed it into a
larger state �AA0BB0 such that �AB is the reduced state of
�AA0BB0 , i.e., trA0B0�AA0BB0 ¼ �AB. Apparently, fðAA0:BB0Þ
is larger than fðA:BÞ. To return a correlation measure for
�AB, we consider the difference fðAA0:BB0Þ � fðA0:B0Þ.
Now let us imagine for a while that quantum (q) and
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classical (c) correlations sum up in a simple way. Then due
to the unsharability of q we can write fðAA0: BB0Þ ¼
qðABÞ þ qðA0B0Þ þ cðAA0: BB0Þ � q1 þ q2 þ c12, while
fðA0:B0Þ¼qðA0:B0ÞþcðA0:B0Þ�q2þc2. Subtracting, we
get q1 (i.e., what we want) plus the difference c12 � c2
which, as we have seen, can be zero because classical cor-
relations are sharable. In general, it will not vanish, so we
take infimum over extensions, trying to squash out the
classical correlations as much as we can. The infimum of
the difference must be of purely quantum origin; hence, we
treat it as a correction to our initial, oversimplified
assumption.

For a given function fð�Þ quantifying a correlation, we
have two candidates for its conditioned version:

Cs
fð�ABÞ ¼ inf½fð�AA0:BB0 Þ � fð�A0:B0 Þ�; (1a)

Ca
fð�ABÞ ¼ inf½fð�A:BEÞ � fð�A:EÞ�; (1b)

where infimum is taken over all extensions �AA0BB0 (�ABE)
of �AB. C

s
fð�Þ is the symmetric conditioned version of f

while Ca
fð�Þ is the asymmetric one. Note that the above

definition is similar to that of conditional entropy [14]
SðAjBÞ ¼ SðABÞ � SðBÞ, with Sð�Þ as the von Neumann
entropy Sð�Þ ¼ �Tr� log�, and is thus referred to as con-
ditional entanglement. As a matter of fact, squashed en-
tanglement can be constructed by taking asymmetric
conditioning of mutual information Esqð�ABÞ ¼ 1

2 �
inffIðA:BEÞ � IðA:EÞg � 1

2 infIðA:BjEÞ, where IðX:YÞ ¼
SðXÞ þ SðYÞ � SðXYÞ is quantum mutual information and
IðA:BjEÞ ¼ SðAEÞ þ SðBEÞ � SðABEÞ � SðEÞ is condi-
tional mutual information. It is notable that IðA:BEÞ �
IðA:EÞ ¼ IðAE:BÞ � IðE:BÞ is symmetric with respect to
systems AB though each term in the formula is asymmetric
with respect to both parties. This gives the possibility to
build symmetric entanglement measures by asymmetric
conditioning. It is surprising that a neat quantum correla-
tion can be obtained by subtracting two dirty functions.
Does this approach really work? The answer is yes (see
Ref. [15] to systematically introduce new entanglement
measures based on quantum conditioning). We illustrate
that a new entanglement measure can indeed be con-
structed by taking f to be quantum mutual information in
the symmetric version. We add a factor 1=2 and denote it
by EI. Most intriguingly, we show below that EI is addi-
tive, has an operational meaning, and can be directly
generalized to multipartite states where the factor 1=2
has a good reason to exist.

Definition 1.—Let �AB be a mixed state on a bipartite
Hilbert space H A �H B. The conditional entanglement
of mutual information for �AB is defined as

EIð�ABÞ ¼ inf12fIðAA0:BB0Þ � IðA0:B0Þg; (2)

where the infimum is taken over all extensions of �AB, i.e.,
over all states satisfying the equation TrA0B0�AA0BB0 ¼ �AB.

To justify that EI is an appropriate entanglement mea-
sure, we now elaborate that it does satisfy two essential
axioms that an entanglement measure should obey [1].
1. Entanglement does not increase under LOCC, i.e.,

EI½�ð�Þ� � EIð�Þ, for any LOCC operation �.—The
monotonicity under LOCC implies that entanglement re-
mains invariant under local unitary transformations. This
comes from the fact that local unitary transformations are
reversible LOCC. The convexity of entanglement used to
be considered as a mandatory ingredient of the mathemati-
cal formulation of monotonicity [1,16]. At present, the
convexity is thought to be merely a convenient mathemati-
cal property. Also, there is a common agreement that the
strong monotonicity—monotonicity on average under
LOCC—is unnecessary but useful [1,16]. Many known
existing entanglement measures are convex and satisfy
the strong monotonicity. We will show that EI satisfies
the strong monotonicity.
Since, as we will see further, EI is convex, it is sufficient

to prove that EI is nonincreasing under a local measure-
ment [17] (without loss of generality, we can check it only
on Alice’s side), namely, EIð�ABÞ �

P
kpkEIð~�k

ABÞ, where
~�k
AB ¼ Ak�ABA

y
k =pk, pk ¼ trAk�ABA

y
k , and

P
kA

y
k Ak ¼ IA.

Another way to describe the measurement process is as
follows. First, one attaches two ancillary systems A0 and
A1 in states j0iA0

and j0iA1
to system AB. Second, a unitary

operationUAA0A1
on AA0A1 is performed. Third, the system

A1 is traced out to get the state as ~�A0AB
¼ P

kAk�ABA
y
k �

ðjkihkjÞA0
. Now for any extension state �AA0BB0 , we get

the state after the measurement on A: ~�A0AA
0BB0 ¼P

kAk�AA0BB0Ay
k � ðjkihkjÞA0

¼ P
kpk ~�

k
AA0BB0 � ðjkihkjÞA0

.

Most crucially, we have

Ið�AA0:BB0 Þ � Ið�A0:B0 Þ ¼ Ið0A0A1
� �AA0:BB0 Þ

� Ið�A0:B0 Þ (3a)

¼ IðUA0A1Að0A0A1
� �AA0:BB0 ÞÞ

� Ið�A0:B0 Þ (3b)

� Ið~�A0AA
0:BB0 Þ � Ið~�A0:B0 Þ (3c)

¼ X

k

pk½Ið~�k
AA0:BB0 Þ � Ið~�k

A0:B0 Þ�

þX

k

pkIð~�k
A0:B0 Þ � Ið~�A0:B0 Þ

þ Sð~�BB0 Þ �X

k

pkSð~�k
BB0 Þ

¼ X

k

pk½Ið~�k
AA0:BB0 Þ � Ið~�k

A0:B0 Þ�

þ �ðBB0Þ þ �ðA0B0Þ � �ðA0Þ
� �ðB0Þ � X

k

pk½Ið~�k
AA0:BB0 Þ

� Ið~�k
A0:B0 Þ�; (3d)

where �ð�Þ ¼ Sð�Þ �P
kpkSð�kÞ is the Holevo quantity

of the ensemble fpk; �
kg. The equality of (3b) follows from

invariance of quantum mutual information under local uni-
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tary operations, while the inequalities of (3c) and (3d) stem
from, respectively, the fact that quantum mutual informa-
tion and the Holevo quantity are nonincreasing under trac-
ing out a subsystem. Consequently, we have proved that EI

is nonincreasing on average under LOCC operations.
2. Entanglement is not negative and is zero for separable

states.—The inequality EI � 0 comes from the fact that
the quantum mutual information is nonincreasing under
tracing subsystems of both sides. For a separable state �AB,
it can always be decomposed into a separable form: �AB ¼P

i;jpij�
i
A ��j

B. An extension state may be chosen to be

�AA0BB0 ¼ P
i;jpij�

i
A � ðjiihijÞA0 ��j

B � ðjjihjjÞB0 . It is ob-

vious that IðAA0:BB0Þ ¼ IðA0:B0Þ, and thus EI ¼ 0 for
separable states.

Continuity.—The conditional entanglement of mutual
information is asymptotically continuous; i.e., if j�AB �
�ABj � �, then jEIð�Þ � EIð�Þj � K� logdþOð�Þ,
where j � j is the trace norm for matrix,K is a constant, d ¼
dimH AB, andOð�Þ is a function that depends only on � (in
particular, it does not depend on dimension) and satisfies
lim�!0Oð�Þ ¼ 0.

The proof of the asymptotic continuity is similar to that
for squashed entanglement and is presented in the appen-
dix of Ref. [15].

Convexity.—EI is convex; i.e., EI½��þ ð1� �Þ�� �
�EIð�Þ þ ð1� �ÞEIð�Þ for 0 � � � 1.

Proof.—For any extension states �AA0BB0 and�AA0BB0 , we
consider the extension state �AA0A00BB0B00 ¼ ��AA0BB0 �
ðj0ih0jÞA00 � ðj0ih0jÞB00 þ ð1 � �Þ�AA0BB0 � ðj1ih1jÞA00 �
ðj1ih1jÞB00 and have Ið�AA0A00:BB0B00 Þ�Ið�A0A00:B0B00 Þ¼
�½Ið�AA0:BB0 Þ�Ið�A0:B0 Þ�þð1��Þ½Ið�AA0:BB0 Þ�Ið�A0:B0 Þ�.
This implies EI is convex.

An immediate corollary of convexity is that EI � Ef

and furthermore EI � Ec due to the following additivity.
Proposition 1.—EIð�AB � �CDÞ ¼ EIð�ABÞ þ EIð�CDÞ.
Proof.—On the one hand, for any extension states

�AA0BB0 and �CC0DD0 , �AA0BB0 � �CC0DD0 is an extension
state of �AB � �CD.

IðAA0CC0:BB0DD0Þ � IðA0C0:B0D0Þ
¼ IðAA0:BB0Þ � IðA0:B0Þ þ IðCC0:DD0Þ � IðC0:D0Þ:

(4)

So EIð�AB � �CDÞ � EIð�ABÞ þ EIð�CDÞ holds.
On the other hand, for extension states �ACE0:BDF0 of

�AB � �CD, �ACE0:BDF0 is an extension state of �AB and
�CE0:DF0 is an extension state of �CD. Therefore we have

IðACE0:BDF0Þ�IðE0:F0Þ¼ IðACE0:BDF0Þ�IðCE0:DF0Þ
þIðCE0:DF0Þ�IðE0:F0Þ: (5)

This means that EIð�AB � �CDÞ � EIð�ABÞ þ EIð�CDÞ. So
we have finally the additivity equality.
It is quite remarkable that the property of additivity is

rather easy to prove for conditional entanglement while it
is extremely tough for other candidates. The reason lies in
that the conditional entanglement is naturally superaddi-
tive while others are usually subadditive.
Before we elaborate on the operational meaning of the

measure EI, we briefly recall that of quantum conditional
mutual information [18], in which the quantum mutual
information one [19] corresponds to a special case.
Quantum conditional mutual information is given the op-
erational meaning in the process of quantum state redis-
tribution [18]. The situation is depicted in Fig. 1: Initially,
XY is with Alice and Z with Bob. R is the reference system
such that �RXYZ is pure. The task is that Alice sends Y to
Bob while the final state is still in the pure state �RXYZ.
Alice and Bob share entanglement for free and have an
ideal quantum channel to communicate. No classical com-
munication is allowed. To accomplish the task, the minimal
number of qubits that are required to transfer from Alice to
Bob is Q ¼ 1=2IðR:YjZÞ.
In a recent paper [6], the squashed entanglement re-

ceived the operational meaning with the aid of that of
conditional mutual information. It gives a hint for finding
the operational meaning for EI since it can be regarded as a
measure constructed in the same spirit. Does the condi-
tional function 1

2 fIðAA0:BB0Þ � IðA0:B0Þg have an opera-

tional meaning? It turns out that it does. Even more, it is
a conservative quantity, which describes a process, but
depends only on the initial and final states. The scenario
where it works is a process called partial state merging
(PSM). Here we take the name partial state merging that is
somewhat different from the original one in [14]. The
situation of PSM is depicted in Fig. 2: Initially, AA0 is
with Alice and BB0 with Bob, E is with the merging center,
and the whole state�AA0BB0E is pure. The task is to transfer
A and B to the center while the final state remains the same.
There is infinite entanglement and an ideal quantum chan-
nel between Alice (Bob) and the center. But no entangle-
ment and no channel exist between Alice and Bob. No
classical communication is allowed between Alice (Bob)
and the center. To accomplish the task, the minimal net
flow of qubits to the center is none other than Q ¼ 1

2 �fIðAA0:BB0Þ � IðA0:B0Þg, where the flow into the center is
regarded as positive flow while that out is negative. There

R

XY Z

R

X YZ

Y

FIG. 1. Quantum state redistribution.

BB E AA B E
BA A

FIG. 2. Partial state merging.
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are many different routes to merge A and B. Dramatically,
the net flow is a conservative quantity independent of the
different routes of merging. Without loss of generality, we
take the two typical routes in Fig. 3 to show this. In routes I
and II, the net flow of qubits to E is calculated as

QI ¼ 1=2fIðBB0:AjEÞ þ IðA0:BjEAÞg
¼ 1=2fIðAA0:BB0Þ � IðA0:B0Þg;

QII ¼ 1=2fIðBB0:AA0Þ þ 0� IðA0:B0Þg;
where the relation SðXÞ ¼ SðYÞ is used when XY is in a
pure state. Of course, there are other routes; however, the
net flow to the center is the same.

Given the operational meaning of the quantity Q ¼ 1
2 �fIðAA0:BB0Þ � IðA0:B0Þg, we immediately obtain the opera-

tional meaning of EI.
Proposition 2.—For a given mixed state �AB to be

merged to a center, the conditional entanglement of mutual
information is the minimal net flow of qubits to the center
with the optimal side information �A0B0 .

Notice that, for separable state �AB, there always exist
the side information �A0B0 such that the net flow of qubits to
the center is zero. The more entangled �AB is, the greater is
the flow of qubits to the merging center.

The result and conclusion can be straightforwardly gen-
eralized to the multipartite case where the multipartite ver-
sion of EI is defined as EI ¼ inf12 fInðA1A

0
1: � � � :AnA

0
nÞ �

InðA0
1: � � � :A0

nÞg, and In ¼ P
iSðAiÞ � SðA1 . . .AnÞ is the

multipartite mutual information [20].
Proposition 3.—The conditional entanglement for mul-

tipartite mutual information is additive:

EIð�A1...An
� �B1...Bn

Þ ¼ EIð�A1...An
Þ þ EIð�B1...Bn

Þ:
Proposition 4.—For a multipartite mixed state �A1...An

to

be merged to a center, the conditional entanglement of
mutual information is the minimal net flow of qubits to
the center with the optimal side-information �A0

1...A
0
n
.

One can check that Q ¼ 1
2 fIðAA0:BB0Þ � IðA0:B0Þg is

also the quantity that describes the flow of qubits out of
the center in the process of partial state distribution (PSD)
that is the reversed process of PSM. In Fig. 4, we depict the
two reversible processes for a tripartite state. It is easy to
see that the factor 1=2 remains throughout calculating the
flow of qubits. This gives an operational ground that the
factor is 1=2 even for multipartite entanglement. Notice

that if only the monotonicity under LOCC is required, the
factor can be taken, for example, 1=n for the n-partite case
that is also reduced to the same formula for bipartite case.
However, it does not match the operational meaning.
In summary, we have constructed an additive entangle-

ment measure—conditional entanglement of mutual infor-
mation—and elaborated its operational meaning. The
conclusions have been generalized to multipartite entan-
glement, with an additive and operational multipartite en-
tanglement measure being provided for the first time.
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FIG. 3. Two typical routes.

PRL 101, 140501 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

3 OCTOBER 2008

140501-4


