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We construct a large class of non-Markovian master equations that describe the dynamics of open

quantum systems featuring strong memory effects, which relies on a quantum generalization of the

concept of classical semi-Markov processes. General conditions for the complete positivity of the

corresponding quantum dynamical maps are formulated. The resulting non-Markovian quantum processes

allow the treatment of a variety of physical systems, as is illustrated by means of various examples and

applications, including quantum optical systems and models of quantum transport.
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The analysis of the time evolution of open systems plays
a central role in many applications of modern quantum
theory, including quantum information science, quantum
transport theory, quantum thermodynamics, and quantum
process tomography and control (see, e.g., [1]). The state of
an open quantum system that is coupled to the degrees of
freedom of its surroundings is represented by a time-
dependent density matrix �ðtÞ. In the Markovian regime
the dynamics is governed by a master equation of the
relatively simple form

d

dt
�ðtÞ ¼ L�ðtÞ; (1)

where L is a time-independent generator with the famous
Gorini-Kossakowski-Sudarshan-Lindblad structure [2]

L� ¼ �i½H;�� þX
�

�
A��A

y
� � 1

2
fAy

�A�; �g
�
: (2)

The Hamiltonian H describes the coherent part of the time
evolution and the A� are certain operators representing the
various decay modes. The solution of Eq. (1) can bewritten
in terms of a linear map VðtÞ ¼ expðLtÞ that transforms the
initial state �ð0Þ into the state �ðtÞ ¼ VðtÞ�ð0Þ at time t.
The physical interpretation of this map VðtÞ requires that it
preserves the trace and the positivity of the density matrix
�ðtÞ. According to general physical principles VðtÞmust be
a completely positive (CP) map [3,4]. Hence, VðtÞ repre-
sents a CP dynamical semigroup known as quantum
Markov process, whose generator has been proven [2] to
be of the form (2).

The quantum dynamics given by Eq. (2) has a clear-cut
connection to a classical Markov process for the case in
which one has a closed system of equations for the pop-
ulations PnðtÞ ¼ hnj�ðtÞjni in a fixed orthonormal basis
fjnig of the open system’s Hilbert space, typically the
energy eigenbasis. In fact, in this case one recovers the
Pauli master equation,

d

dt
PnðtÞ ¼

X
m

½�nmPmðtÞ � �mnPnðtÞ�; (3)

which describes a classical Markovian jump process with
transition rates �mn, justifying the notion of a quantum
Markov process.
The most important physical assumption which under-

lies the master equation (1) is the validity of the Markov
approximation of short environmental correlation times. If
this approximation is violated non-Markovian dynamics
emerges which is characterized by pronounced memory
effects, finite revival times, and nonexponential relaxation
and decoherence. These effects can result from long-range
correlation functions, from correlations and entanglement
in the initial state, as well as from the neglection of extra
degrees of freedom affecting the dynamics [5,6]. As a
consequence the theoretical treatment of non-Markovian
quantum dynamics is generally extremely demanding. A
widely used non-Markovian generalization of Eq. (1) is
given by the integrodifferential equation

d

dt
�ðtÞ ¼

Z t

0
d�Kð�Þ�ðt� �Þ: (4)

In this equation one takes into account quantum memory
effects through the introduction of the memory kernel
Kð�Þ which means that the rate of change of the state
�ðtÞ at time t depends on the states �ðt� �Þ at previous
times t� �. Equations of the form (4) arise, for instance,
by employing the standard Nakajima-Zwanzig projection
operator technique [7]. Obviously, the Markovian master
equation (1) is obtained if the memory kernel is taken to be
proportional to a � function, Kð�Þ ¼ 2�ð�ÞL.
In order to be physically acceptable the superoperator

Kð�Þ appearing in Eq. (4) must grant the CP of the result-
ing quantum dynamical map VðtÞ. This is a very stringent
requirement and, in fact, the general structural character-
ization of physically admissible memory kernels is an
unsolved problem of central importance in the field of
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non-Markovian quantum dynamics [5,8]. It has been real-
ized recently that even the most simple and natural choices
for the memory kernel can lead to unphysical results [5,9].
To improve this situation we will construct a class of non-
Markovian quantum master equations that arises naturally
as a quantum mechanical generalization of classical semi-
Markov processes [10]. The approach proposed here leads
to important physical insights guiding the phenomenologi-
cal determination of the memory kernel, and, at the same
time, enables a compact formulation of sufficient condi-
tions that guarantee the existence and the CP of the quan-
tum dynamical map. Moreover, for a specific class of
processes one can formulate CP conditions which are not
only sufficient but also necessary.

We consider memory kernels with the general structure

K ð�Þ� ¼ �i½Hð�Þ; �� � 1

2

X
�

fAy
�ð�ÞA�ð�Þ; �g

þX
�

A�ð�Þ�Ay
�ð�Þ; (5)

that is to say of the form given by Eq. (2) apart from the
time dependence of the considered operators. As previ-
ously done in the Markovian case let us consider the
situation in which the populations obey a closed system
of equations of motion, which then takes the form

d

dt
PnðtÞ¼

Z t

0
d�

X
m

½Wnmð�ÞPmðt��Þ�Wmnð�ÞPnðt��Þ�;

(6)

where Wnmð�Þ ¼
P

�jhnjA�ð�Þjmij2. This is the master
equation for a general type of classical non-Markovian
processes known as semi-Markov processes [10]. Thus,
whenever the populations obey closed equations, Eq. (2)
yields the classical Markovian master equation (3), while
Eq. (4) with the kernel (5) leads under the same conditions
to the generalized master equation (6) for a classical semi-
Markov process. This justifies on the same footing as
before the name quantum semi-Markov process.

To clarify the physical content of Eq. (6) let us consider
as an example the situation in which the kernel functions
WnmðtÞ factorize as WnmðtÞ ¼ �nmkmðtÞ, where �nm � 0
and

P
n�nm ¼ 1. The corresponding process can then be

interpreted as describing a particle moving on a lattice with
sites labeled by n, where the �nm are the probabilities for
jumps from sitem to site n. Jumps out of a given site n take
place after a certain waiting time t that follows the waiting
time distribution fnðtÞ. The characteristic feature of semi-
Markov processes is the fact that, by contrast to the
Markovian case, fnðtÞ need not be an exponential function,
but can be any probability distribution, thus giving rise to
memory effects. These waiting time distributions are
uniquely determined by the functions knðtÞ according to
the relation [11]

fnðtÞ ¼
Z t

0
d�knð�Þgnðt� �Þ � ðkn � gnÞðtÞ; (7)

where the function

gnðtÞ ¼ 1�
Z t

0
d�fnð�Þ (8)

denotes the probability not to have left site n by time t, the
so-called survival probability, and � is the usual convolu-
tion product. The generalized master equation (6) therefore
provides a physically acceptable time evolution for the
populations PnðtÞ, granting, in particular, their positivity,
provided the functions knðtÞ allow an interpretation in
terms of waiting time distributions [11,12].
However, these classical conditions are clearly not

enough to ensure the existence of a well-defined dynamics
in the quantum case, and a general characterization at the
quantum level can hardly be achieved. Therefore our next
goal is the formulation of sufficient conditions that guar-
antee the CP of the dynamical map VðtÞ corresponding to
the non-Markovian master equation defined by Eqs. (4)
and (5), no longer assuming that closed equations for the
populations exist. This map is defined by

d

dt
VðtÞ ¼

Z t

0
d�Kð�ÞVðt� �Þ; (9)

together with the initial condition Vð0Þ ¼ I, with I the
identity map. We now employ ideas recently formulated
in Ref. [13], decomposing the memory kernel as Kð�Þ ¼
Bð�Þ þ Cð�Þ, where Bð�Þ is the CP map defined by

Bð�Þ� ¼ X
�

A�ð�Þ�Ay
�ð�Þ; (10)

and Cð�Þ is given by the first line of (5). We further
introduce the map V0ðtÞ as the solution of the equation

d

dt
V0ðtÞ ¼

Z t

0
d�Cð�ÞV0ðt� �Þ; (11)

with the initial condition V0ð0Þ ¼ I. Considering the
Laplace transforms of Eqs. (9) and (11) one obtains a
resolventlike identity for the dynamical map leading in
the time domain to the equation

VðtÞ ¼ V0ðtÞ þ ðV0 � B � VÞðtÞ: (12)

Regarding formally the superoperator Bð�Þ as a perturba-
tion and iterating Eq. (12) one finds that the full dynamical
map VðtÞ can be represented as a series,

VðtÞ ¼ V0ðtÞ þ ðV0 � B � V0ÞðtÞ
þ ðV0 � B � V0 � B � V0ÞðtÞ þ . . . : (13)

Because of the fact that the set of CP maps is closed under
addition and convolution, we can conclude from Eq. (13)
that VðtÞ is CP if V0ðtÞ is CP. To bring this condition into an
explicit form let us assume that the Hermitian operators

Hð�Þ and
P

�A
y
�ð�ÞA�ð�Þ are diagonal in the time-
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independent orthonormal basis fjnig, that is Hð�Þ ¼P
n"nð�Þjnihnj andX

�

Ay
�ð�ÞA�ð�Þ ¼

X
n

knð�Þjnihnj: (14)

Then we can solve Eq. (11) to obtain

V0ðtÞ�ð0Þ ¼
X
nm

gnmðtÞjnihnj�ð0Þjmihmj; (15)

where the functions gnmðtÞ are the solutions of

_g nmðtÞ ¼ �
Z t

0
d�½znð�Þ þ z�mð�Þ�gnmðt� �Þ; (16)

corresponding to the initial conditions gnmð0Þ ¼ 1, and
znð�Þ ¼ 1

2 knð�Þ þ i"nð�Þ. To prove Eq. (15) one first shows
that Cð�ÞðjnihmjÞ ¼ �½znð�Þ þ z�mð�Þ�jnihmj. Using this
relation one easily demonstrates that the expression (15)
indeed represents the desired solution of Eq. (11). It is
important to notice that the functions gnnðtÞ do actually
coincide with the survival probabilities gnðtÞ introduced by
Eq. (8).

Employing the Kraus representation [3] we see that the
map V0ðtÞ given by Eq. (15) is CP if and only if the matrix
with elements gnmðtÞ is positive,

GðtÞ ¼ ðgnmðtÞÞ � 0: (17)

Hence, we arrive at a sufficient condition for CP: The
quantum dynamical map VðtÞ corresponding to the non-
Markovian master equation (4) with the memory kernel (5)
is CP if the condition (17) is fulfilled. A necessary condi-
tion for (17) to hold is the positivity of the diagonal
elements of GðtÞ, which are given by the survival proba-
bilities gnðtÞ ¼ gnnðtÞ. This necessary condition in turn
implies the positivity of the functions fnðtÞ according to
Eq. (7), which can then be interpreted as true waiting time
distributions. The positivity of the matrix GðtÞ therefore
represents a natural quantum generalization of the classical
conditions.

We illustrate the result (17) with the help of several
examples, which all fall into the class of quantum semi-
Markov processes introduced by means of Eqs. (4) and (5).
A prototypical system showing strong non-Markovian be-
havior is a two-level atom interacting with a damped field
mode described by the memory kernel

Kð�Þ� ¼ �i"ð�Þ½�þ��; ��
þ kð�Þ

h
����þ � 1

2f�þ��; �g
i
: (18)

Excited and ground state are denoted by jþi and j�i,
respectively, and �� are the corresponding raising and
lowering operators. The index n thus takes on the two
values n ¼ �. For a positive function kð�Þ the memory
kernel (18) is of the form specified above with kþð�Þ ¼
kð�Þ, k�ð�Þ ¼ 0, "þð�Þ ¼ "ð�Þ, and "�ð�Þ ¼ 0. Hence, the
matrix GðtÞ takes the form

GðtÞ ¼ gþþðtÞ gþ�ðtÞ
g�þ�ðtÞ 1

� �
; (19)

with gþþðtÞ and gþ�ðtÞ determined by Eq. (16). Thus we
see that the condition (17) for CP is equivalent to gþþðtÞ �
jgþ�ðtÞj2. The master equation corresponding to the mem-
ory kernel (18) can be solved analytically. One then finds
that for this case the condition (17) is not only sufficient but
also necessary for CP.
A further very instructive example involving an infinite

dimensional Hilbert space is the model of a quantum
oscillator with non-Markovian damping studied in
Ref. [9]. The memory kernel for this model reads

K ð�Þ� ¼ kð�Þ
�
a�ay � 1

2faya; �g
�
; (20)

where kð�Þ ¼ � expð���Þ and ay, a are the raising and
lowering operators of the oscillator. This kernel is again of

the form (5) with a single Lindblad operator Að�Þ ¼ffiffiffiffiffiffiffiffiffi
kð�Þp

a. Here, the basis states jni are the number states
of the oscillator, knð�Þ ¼ nkð�Þ and "nð�Þ ¼ 0. Solving
Eq. (16) by means of a Laplace transformation, we find

gnnðtÞ ¼ e��t=2

�
coshðdnt=2Þ þ �

dn
sinhðdnt=2Þ

�
;

where dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�=2Þ2 � n�

p
. For the necessary condition

gnnðtÞ � 0 to hold dn must be real. This shows that condi-
tion (17) is certainly violated if 4n� > �2. Because n can
be arbitrary large we conclude that condition (17) is never
fulfilled. The interesting aspect of this example is the fact
that the non-Markovian master equation indeed violates
not only CP but also positivity. This fact has been demon-
strated in [9] and clearly shows again the relevance of our
CP conditions.
Many further physical systems lead to a generalized

master equation of the form introduced here if one applies
the Nakajima-Zwanzig projection operator technique, such
as the tight-binding quantum diffusion model studied in
[14], and the quantum transport model introduced in [15],
which leads to a memory kernel of the form

K ð�Þ� ¼ kð�Þ
h
1
2T�T

y þ 1
2T

y�T � �
i
: (21)

This kernel describes the motion of an excitation in a
modular system consisting of weakly coupled subunits
labeled by the index n, where T ¼ P

njnþ 1ihnj repre-
sents the corresponding translation operator. The model
features strong non-Markovian behavior and a transition
from diffusive to ballistic quantum transport. The memory
kernel Kð�Þ is obviously of the form introduced above.
The Hamiltonian contribution vanishes, Hð�Þ ¼ 0, and all
kernel functions are equal to each other, knð�Þ ¼ kð�Þ,
which corresponds to the special case treated in
Refs. [5,13] with a loss term proportional to the identity
operator. Equation (16) shows that also all matrix elements
ofGðtÞ are equal, gnmðtÞ ¼ gðtÞ, and, hence, condition (17)
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reduces to the condition gðtÞ � 0. Clearly this condition
leads to important restrictions on the form of the kernel
function kð�Þ which is determined by the correlation func-
tion of the microscopic model.

As our final example we discuss memory kernels of the
following general structure,

K ð�Þ� ¼ �i½Hð�Þ; �� � 1

2

X
n

knð�Þfjnihnj; �g

þX
nm

�nmkmð�Þjnihmj�jmihnj (22)

of which (18) provides an example. For this memory kernel
the coherences of the density matrix, i.e., the off-diagonal
elements �nmðtÞ ¼ hnj�ðtÞjmi, n � m, are simply given by
�nmðtÞ ¼ �nmð0ÞgnmðtÞ. On the other hand, the diagonals
of the density matrix, i.e., the populations PnðtÞ obey a
closed transport equation as in (6). It is remarkable that in
this case one can go one step further to derive a condition
for the CP which is not only sufficient but also necessary.
To this end one writes the quantum dynamical map VðtÞ
corresponding to the non-Markovian quantum master
equation (4) with the memory kernel (22) in terms of the
functions gnmðtÞ and of the conditional transition proba-
bilities TnmðtÞ obeying the classical master equation (6).
The quantity TnmðtÞ represents the probability that the
particle is at site n at time t given that it started at site m
at time t ¼ 0. With the help of the resulting expression for
the map VðtÞ we then find the following result. Given a
classical semi-Markov process, the quantum dynamical
map VðtÞ is CP if and only if the condition

~GðtÞ ¼ ð~gnmðtÞÞ � 0 (23)

is satisfied. Here, the off-diagonal elements of the matrix
~GðtÞ coincide with those of GðtÞ, while the diagonals of
~GðtÞ are given by the conditional transition probabilities,
~gnnðtÞ ¼ TnnðtÞ. Note that the probabilities TnnðtÞ are in
fact in general greater than the corresponding survival
probabilities gnnðtÞ, since the system can be in state n at
time t both because it has not left it and because it has come
back to the initial state. Equation (23) thus provides a
complete characterization of the CP of the class of quan-
tum semi-Markov processes given by (22).

Building on an analogy with classical semi-Markov
processes we have constructed a large class of non-
Markovian master equations with memory kernel and for-
mulated sufficient conditions for the CP of the resulting
quantum dynamical map. The latter impose strong restric-
tions on the structure of physically acceptable non-
Markovian quantum master equations, which are particu-
larly useful in phenomenological approaches. For a spe-

cific class of quantum semi-Markov processes necessary
and sufficient conditions for CP have also been formulated.
Important further developments of the theory should in-
clude the case of temporarily negative kernel functions and
effects from correlations and entanglement in the initial
state.
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