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Since the first derivation of non-Markovian stochastic Schrödinger equations, their interpretation has

been contentious. In a recent Letter [Phys. Rev. Lett. 100, 080401 (2008)], Diósi claimed to prove that

they generate ‘‘true single system trajectories [conditioned on] continuous measurement.’’ In this Letter,

we show that his proof is fundamentally flawed: the solution to his non-Markovian stochastic Schrödinger

equation at any particular time can be interpreted as a conditioned state, but joining up these solutions as a

trajectory creates a fiction.
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It is well recognized that the continuous measurement of
an open quantum system S with Markovian dynamics can
be described by a stochastic Schrödinger equation (SSE).
The pure-state solution to such an equation over some time
interval, a ‘‘quantum trajectory’’ [1], can be interpreted as
the state of S evolving while its environment is under
continuous observation (monitoring). This fact is of great
importance for designing and experimentally implement-
ing feedback control on open quantum systems [2–4]. If
this interpretation could also be applied to non-Markovian
SSEs [5,6], then this would be very significant for quantum
technologies, especially in condensed matter environ-
ments, which are typically non-Markovian [7].

Previously, we have argued that non-Markovian SSEs
(NMSSEs) cannot be interpreted in this way [6,8]. The
solution at any particular time can be interpreted as the
system state conditioned upon some measurement of the
environment [6]. But connecting up those solutions to
make a trajectory is a fiction akin to trajectories in
Bohmian mechanics [8]. Restricting to standard quantum
mechanics, the basic problem is that for the state of S to
remain pure, the bath field must be continuously observed
to disentangle it from the system. For Markovian dynam-
ics, this is not a problem because the moving field interacts
with S and, having interacted, moves on. But for non-
Markovian dynamics, the field comes back and interacts
again with S. Thus, monitoring the field will feed distur-
bance back into the system, changing the average evolu-
tion of the state of S. That is contrary to the derivation of
the NMSSE, which is constructed so as to reproduce on
average the no-measurement evolution of S.

Recently, Diósi rederived one form of NMSSE from a
different starting point and claimed that, contrary to the
conclusions of Ref. [8], this allows an interpretation of the
solutions as ‘‘true single system trajectories [conditioned
on] continuous measurement’’ [9]. Here, we show by
general argument, and an explicit calculation, that this
claim is incorrect and that the reformulation does not alter
our earlier conclusion.

The non-Markovian system.—Diósi considers a bath
comprising an infinite sequence of von Neumann appara-
tuses An, each described by position and momentum op-
erators x̂n, p̂n, n 2 f1; 2; . . . ;1g. (For clarity, we are using
slightly different notation from Ref. [9].) The system in-
teracts with the bath via the coupling Hamiltonian

V̂ ¼ X
n

�ðt� �nÞX̂p̂n; �n ¼ �n; (1)

where X̂ is an Hermitian system operator. Here, the explicit
time-dependence plays the role of the free propagation of a
bath field. This would seem to be a recipe for generating
Markovian evolution, since S interacts only once with each
An, which thus plays a role analogous to a small segment of
a Markovian bath field. The novelty of Diósi’s approach is
to generate non-Markovian evolution by having the
fAkg1k¼1 prepared in an entangled state j�0i. In the position
representation, it is given by

hfxkg1k¼1j�0i / exp

�
��2

X
l;m

xlxm�ð�l � �mÞ
�
: (2)

The continuum-time limit is � ! 0, where the system is
subjected to infinitely frequent, but infinitesimally strong,
interactions with the apparatuses. In this limit, �ðtÞ plays
the role of the correlation function for the bath. It is a real
and symmetric function [6,10] and equals g2�ðtÞ in the
Markovian case. Assuming the system is initially in a pure
state also, the Hamiltonian (1) produces an entangled
system-bath state j�ð�þn Þi immediately after the n
interaction.
Diósi first considers the case where, immediately after

each time �n, the observable x̂n is measured, yielding result
xn. This gives an unnormalized state for the conditioned
quantum system, ~�ð�þn ; fxlgnl¼1Þ, given by

Tr fAmg1m¼nþ1
½hfxlgnl¼1j�ð�þn Þih�ð�þn Þjfxlgnl¼1i�; (3)

with Tr½~�ð�þn ; fxlgnl¼1Þ� being the probability for the recordfxlgnl¼1. In the limit � ! 0, this state (if appropriately

scaled) will have a continuous but stochastic evolution

PRL 101, 140401 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

3 OCTOBER 2008

0031-9007=08=101(14)=140401(4) 140401-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.140401


through time. The measurement of observable x̂n does not
disturb the future evolution of S because An never interacts
with S again. Thus, there is no difficulty with interpreting
this stochastic evolution as the trajectory of an individual
system, with the average state at time t

�ðtÞ ¼
Z 1

�1
dx0 � � �

Z 1

�1
dxn ~�ðt; fxlgbt=�cl¼1 Þ (4)

being identical with that obtained simply by tracing over
the bath (the apparatuses),

�ðtÞ ¼ TrfAkg1k¼1
½j�ðtÞih�ðtÞj�: (5)

It is obvious, however, that ~�ðt; fxlgbt=�cl¼1 Þ is not the solu-
tion of a SSE, for the simple reason that the state is mixed,
not pure, even if it begins pure [11]. The mixedness arises
because the interaction of S with An entangles S with Am

for m> n because initially An and Am are entangled. That
is, the system becomes entangled with apparatuses that are
not yet measured. A mixed conditional equation state is not
unexpected for non-Markovian systems. It has previously
been shown in Refs. [12,13] that it is possible to derive a
mixed state quantum trajectory equation that reproduces
the non-Markovian evolution on average by adding to S a
fictitious system F, with the latter coupled to a monitored
(Markovian) bath. A mixed state for S arises when the
partial trace over F is performed. See Ref. [14] for a
comparison of this method with that of the NMSSE.

The non-Markovian SSE and its interpretation.—The
only way to obtain a pure state for S at time t is by
measuring all the apparatuses with which the system is
entangled. Specifically, Diósi shows that it is necessary to
measure the set of bath observables fẑðsÞ:s 2 ½0; t�g, where
ẑðsÞ is the ‘‘retarded observable’’ [9]

ẑðsÞ ¼ 2�
X1
k¼1

x̂k�ðs� �kÞ: (6)

This is of course a different observable at different times s.
The state conditioned on the result Zt � fzðsÞ:s 2 ½0; t�g of
this measurement at time t is a functional of zðsÞ for 0 �
s � t, which we will write as j �c t½Zt�i. Diósi shows that
this state is pure, and that it is the solution of the NMSSE

dj �c t½Zt�i
dt

¼ X̂t

�
zðtÞ � 2

Z t

0
�ðt� sÞ �

�zðsÞ ds
�
j �c t½Zt�i:

(7)

Here, Diósi is working in the interaction picture with

respect to the system Hamiltonian Ĥ; hence, the time

dependence of X̂t � eiĤtX̂e�iĤt. Equation (7) was first
derived in Refs. [6,10], but is very similar to that derived
earlier in Refs. [5]. The ensemble average of solutions of
this NMSSE reproduces the reduced state of the system:

�ðtÞ ¼ Efj �c t½Zt�ih �c t½Zt�jg: (8)

Here, in taking the expectation value, zðtÞ must be treated
as a Gaussian noise process with correlation function
E½zðtÞzðsÞ� ¼ �ðt� sÞ, as appropriate for j�0i. This con-

vention is indicated by the notation �c (as opposed to ~c )
for the state.
The contentious issue is not whether the solution

j �c t½Zt�i has an interpretation in standard quantum me-
chanics. As just explained, this state is the conditioned
state of S at time t if an all-at-one measurement of the
set of bath observables fẑðsÞ:s 2 ½0; t�g were made at that
time, yielding the result Zt. The contentious issue is: can
the family of states j �c t½Zt�i for 0 � t � 1 be interpreted
as a trajectory for the state of a single system, conditioned
on monitoring of its bath. Diósi claims that it can be so
interpreted and that the required monitoring is simply to
measure ẑð�0Þ at time �þ0 , ẑð�1Þ at time �þ1 , and so on. At

first sight, this monitoring may seem equivalent to the all-
at-once measurement described above. But in fact it is not,
as we will now explain.
A measurement of ẑðtÞ at time tþ involves measuring

apparatuses that have not yet interacted with S. This is
necessarily so because the symmetry of �ð�Þ means that
ẑðtÞ contains contributions from x̂m for some �m > t (ex-
cept for the Markovian case of course). Consequently, ẑðtÞ
does not commute with p̂m for some �m > t, and the
measurement will therefore disturb these momentum ob-
servables. But these are precisely the observables that will
couple to the system via (1), and thereby disturb it. Thus, as
soon as the first measurement is performed, of ẑð�0Þ at time
�0, S ceases to obey the NMSSE. Whatever stochastic
evolution it does undergo, it will not reproduce the reduced
state of the unmeasured system �ðtÞ.
It might be thought that it would be possible to avoid this

alteration of the future evolution of the system by repre-
paring the apparatuses Am for �m > t in their premeasure-
ment states. However, this is not possible; before the mea-
surement, these Am were entangled with the system S and
the other apparatuses. The correlation of these Am with S is
why the system state ~�ð�n; fxlgnl¼1Þ, conditioned on mea-

suring the apparatuses after they have interacted with the
system, ismixed. The evolution of this state over time is the
only true quantum trajectory for a single system, and its
mixedness is an inevitable consequence of the non-
Markovian dynamics. In fact, we now show by explicit
calculation that the monitoring Diósi suggests does not
even produce pure conditioned states of S—it also leads
to mixed states.
A simple example.—We consider the case where the bath

consists of two apparatuses and � ¼ 1. Thus, there are just
three relevant times: �0 ¼ 0 (the initial time), �þ1 ¼ 1 ( just
after the interaction with A1), and �þ2 ¼ 2 (just after the
interaction with A2). Without loss of generality, we can
write the initial Gaussian entangled state of the bath,
analogous to Eq. (2), as

�0ðx1; x2Þ ¼ c exp½�ðx21 þ x22 þ 2ax1x2Þ�; (9)

where c2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
=�. Here, 0 � a < 1 parametrizes

the initial entanglement between the apparatuses. The
analogue of Eq. (6) defines two operators,

PRL 101, 140401 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

3 OCTOBER 2008

140401-2



ẑ 1 ¼ 2ðx̂1 þ ax̂2Þ; ẑ2 ¼ 2ðx̂2 þ ax̂1Þ: (10)

Let us consider the unconditioned evolution of the sys-
tem. At the initial time �0, the total state is

j�0i ¼
Z
2
�0ðx1; x2Þjx1i1jx2i2jc 0idx1dx2; (11)

where the final ket (with no subscript) denotes a state of S,
and the subscript on the integral sign indicates it is a double

integral. This evolves to the following state immediately
after the interaction with the first apparatus:

j�1i ¼
Z
3
�0ðx1; x2Þjx1 þ X1i1jx2i2jX1ihX1jc 0i

� dx1dx2dX1: (12)

Here, jX1i denote eigenstates of X̂1 � X̂ð�1Þ, which we
have taken to have a continuous spectrum for simplicity.
Finally, after the second interaction, the total state is

j�2i ¼
Z
4
�0ðx1; x2Þjx1 þ X1i1jx2 þ X2i2jX2ihX2jX1ihX1jc 0idx1dx2dX1dX2: (13)

From Eq. (13), the reduced state for the system at time �þ2 is simply

�2 ¼
Z
4
�2

0

�
X1 � X0

1

2
;
X2 � X0

2

2

�
jX2ihX2jX1ihX1jc ihc jX0

1ihX0
1jX0

2ihX0
2jdX1dX2dX

0
1dX

0
2: (14)

All-at-once measurement at time �þ2 .—It is convenient to use, rather than the observables ẑn (10), the scaled observables

ŷ 1 ¼ ẑ1=2 ¼ x̂1 þ ax̂2 � �1ðx̂1; x̂2Þ; ŷ2 ¼ ẑ2=2 ¼ x̂2 þ ax̂1 � �2ðx̂1; x̂2Þ: (15)

A measurement of ẑn, or ŷn, is described by the projector-density �̂nðynÞ, defined by

�̂ nðynÞ ¼
Z

dx1
Z

dx2�̂1ðx1Þ � �̂2ðx2Þ�ðyn � �nðx1; x2ÞÞ; (16)

where �̂nðxÞ ¼ jxinhxjn. Note that, unlike �̂nðxÞ, �̂nðyÞ is not a rank-one projector; it is in fact a rank-infinity projector. It
satisfies

R
dy�̂nðyÞ ¼ 1 and �̂nðyÞ�̂nðy0Þ ¼ �ðy� y0Þ�̂nðyÞ (no sum over n implied). It is obvious from the definition

(10) that the two measurements commute.
Consider first the case where at time �þ2 , projective measurements of ŷ1 and ŷ2 are performed. This yields

j ~�2ðy1; y2Þi ¼ �̂2ðy2Þ�̂1ðy1Þj�2i ¼
��������
y1 � ay2
1� a2

�
1

��������
y2 � ay1
1� a2

�
2
j ~c 2ðy1; y2Þi; (17)

where the conditional system state j ~c 2ðy1; y2Þi is

c
Z
2
exp½�ðX1 � y1Þ2 � ðX2 � y2Þ2� exp

�
�2aX1X2 � a2ðy21 þ y22Þ � 2ay1y2

1� a2

�
jX2ihX2jX1ihX1jc 0idX1dX2: (18)

Obviously, S is no longer entangled with fA1; A2g. This is as
expected since the operators ŷ1 and ŷ2 are linearly inde-
pendent, and jointly measuring these is equivalent to
jointly measuring x̂1 and x̂2. That is, the measurement at
time �þ2 effects a rank-one projective measurement on the
bath, disentangling it from the system. Moreover, it is easy
to verify that, as expected,

1

1� a2

Z
2
j ~c 2ðy1; y2Þih ~c 2ðy1; y2Þjdy1dy2 ¼ �2: (19)

This establishes that Eq. (18) is indeed the discrete-time
analogue of the solution of the NMSSE (7) at the relevant
time (here, �þ2 ).

Monitoring (measurements at �þ1 and �þ2 ).—Now con-
sider the case that Diósi claims is equivalent to the above,
namely, measuring ŷ1 at time �þ1 and ŷ2 at �þ2 . From

Eq. (12), the conditional total state at time �þ1 is

j ~�1ðy1Þi ¼ �̂1ðy1Þj�1i
¼

Z
e�ð1�a2Þx2 jy1 � axi1jxi2dxj ~c 1ðy1Þi; (20)

where the conditional system state is

j ~c 1ðy1Þi ¼ c exp½�ðy1 � X̂1Þ2�jc 0i: (21)

So far we have a pure state for the system, as expected from
Diósi’s argument. However, at the very next step, it breaks
down. Because the measurement of the bath has disturbed
it, we cannot use the state (13) to calculate the next con-
ditioned state. Rather, we must calculate the effect of the
interaction between S and A2 on state (20). The new
entangled system-bath state at �þ2 is

j ~�2j1ðy1Þi ¼
Z
2
e�ð1�a2Þx2 jy1 � axi1jxþ X2i2dxjX2ihX2j ~c 1ðy1ÞidX2: (22)
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Here, the 2j1 subscript indicates that the state is at time �þ2
but the measurements it is conditioned upon was per-
formed at time �þ1 .

After the second measurement, we have

j ~�2j1;2ðy1; y2Þi ¼ �̂2ðy2Þj ~�2j1ðy1Þi; (23)

which evaluates to

c
Z ��������

aX2 þ y1 � ay2
1� a2

�
1

��������
y2 � a2X2 � ay1

1� a2

�
2
exp

�
�ðX2 þ ay1 � y2Þ2

1� a2

�
jX2ihX2j exp½�ðX̂1 � y1Þ2�jc 0idX2: (24)

Note that this is an entangled state between S and the
bath—it is not possible to define a pure conditional state
for the system. The reason is that, as noted above, the
projector �̂2ðy2Þ is not rank-one, so there is no guarantee
that it will disentangle the system from the bath. So the
monitoring procedure Diósi describes cannot possibly cor-
respond to the solution of the NMSEE (7). Moreover, it is
easy to verify that, as expected,

Z
2
Tr12½j ~�2j1;2ðy1;y2Þih ~�2j1;2ðy1;y2Þj�dy1dy2��2: (25)

That is, the measurements described by Diósi disturb the
evolution of the system so that it no longer obeys the
original non-Markovian dynamics.

Markovian limit.—There is one case where Diósi’s
monitoring procedure does give a pure-state solution at
all times which is identical to that which would be obtained
by an all-at-once measurement at that time. This is case
a ! 0, where ŷn ¼ x̂n. That is to say, the initial bath state
is unentangled, and the apparatuses are measured locally.
In this Markovian limit, we find

j ~�2ðy1; y2Þi ¼ jy1i1jy2i2j ~c 2ðy1; y2Þi; (26)

where the conditional state j ~c 2ðy1; y2Þi is given by

c exp½�ðX̂2 � y2Þ2� exp½�ðX̂1 � y1Þ2�jc 0i: (27)

This sequence of exponentials can obviously be continued
indefinitely. The correspondence between the all-at-once
measurement and Diósi’s monitoring here is not surprising:
in the Markovian limit, the interpretation of a SSE in terms
of continuous monitoring of the bath is well known.

To conclude, Diósi has introduced an elegant formula-
tion of non-Markovian evolution using a local (Markovian)
coupling to the bath but an initially nonlocal (entangled)
bath state. In this formulation, it is simple to monitor the
bath without affecting the future evolution of the system
because each apparatus only interacts with the system
once. However, to make the conditioned system state
pure, it is necessary to measure not only the apparatuses
which have already interacted with the system, but also
some of those which are yet to interact. Measuring the
latter necessarily introduces noise that will disturb the
future evolution of the system so that it will not reproduce
the original non-Markovian evolution on average. We
show by explicit calculation that the monitoring scheme
suggested by Diósi does disturb the evolution in this man-
ner, and moreover it even fails to produce pure conditional
system states.

While it is certainly possible to derive a non-Markovian
stochastic Schrödinger equation, its solution can only be
interpreted as a conditioned system state at some particular
(but arbitrary) time t [6,8]. Connecting the solutions at
different times creates the illusion of a ‘‘quantum trajec-
tory,’’ but is not part of standard quantum mechanics.
Rather, it is related to Bohmian mechanics and its general-
izations [15] which also allow one to derive discontinuous
(jumplike) trajectories [16]. Whether the jumplike non-
Markovian trajectories recently introduced in Ref. [17] can
be interpreted in a similar manner remains to be deter-
mined. But from the arguments in this Letter, we know that
non-Markovian pure-state trajectories cannot be inter-
preted as true quantum trajectories.
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(1998); W. T. Strunz, L. Diósi, and N. Gisin, Phys. Rev.
Lett. 82, 1801 (1999).

[6] J. Gambetta and H.M. Wiseman, Phys. Rev. A 66, 012108
(2002).

[7] H. P. Breuer and F. Petruccione The Theory of Open
Quantum Systems (Oxford U. Press, Oxford, 2002).

[8] J. Gambetta and H.M. Wiseman, Phys. Rev. A. 68,
062104 (2003).
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