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We present a thermodynamic integration method for free energy evaluation in field-theoretic simula-

tions of classical fluids and polymers. The approach employs an Einstein crystal reference state, analogous

to a method developed for particle simulations of crystals by Frenkel and Ladd, but applies equally well in

the present context to ordered and disordered phases. Thermodynamic averages are computed using

complex Langevin sampling, which is effective against the sign problem inherent to polymer field

theories. Our method is illustrated in the context of a diblock copolymer melt, where we provide a

demonstration of the experimentally observed transition between the cubic gyroid and disordered phases.
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The use of computer simulations to predict accurate
phase diagrams relies upon resolving the free energy of
competing phases near transitions. Simulations of classical
particle-based models are well-adapted to such free energy
calculations. For example, a number of techniques have
been used in fluid state Monte Carlo and molecular dy-
namics simulations to determine both relative and absolute
free energies. These include the methods of particle inser-
tion [1], multiple histograms [2], and thermodynamic in-
tegration to a reference ideal gas or high temperature phase
[3]. In solid phase calculations, applicable techniques in-
clude the single occupancy cell method [4], lattice switch-
ing [5], and thermodynamic integration to a low
temperature or Einstein crystal reference [6].

Despite these advances for particle simulations, free
energy evaluation methods have yet to be explored in the
context of simulations of field theory models increasingly
used to study mesoscale phenomena in complex fluids and
polymers. Such field-theoretic simulations (FTS) are an
attractive way to study the equilibrium properties of in-
homogeneous polymers on scales ranging from nano-
meters to microns [7–9]. In the FTS technique, coarse-
grained particle-based models of polymers are converted to
statistical field theories through the introduction of
Hubbard-Stratonovich auxiliary fields. The fields are given
a finite representation (usually by collocating on a lattice)
and simulations are performed by devising an appropriate
stochastic procedure for importance sampling the discrete
theory. A number of difficult problems in polymer physics
have recently succumbed to this FTS approach, including
the fluctuation-stabilization of polymeric bicontinuous mi-
croemulsions [10] and complexation phenomena in solu-
tions of oppositely charged polyelectrolytes [11].

Heretofore, the free energy has only been accessible in a
mean-field approximation in which fluctuations about
mean (saddle point) field configurations are neglected.
This approach, known as self-consistent field theory
(SCFT), has been successfully used to investigate the phase
behavior of many polymeric systems, most notably block
copolymers [12]. However, the validity of the mean-field
approximation is largely restricted to molten polymers of
high molecular weight, and SCFT is inapplicable to broad
classes of solvated and lower molecular weight systems
[13]. Even in the context of polymer melts, the SCFT
approach has limitations, especially near phase transitions
where composition fluctuations can play an important role.
This can be seen explicitly in Fig. 1, where SCFT fails
qualitatively to describe the order-disorder transition of a
diblock copolymer melt. In particular, the ordered Ia�3d
cubic ‘‘gyroid’’ phase (G) is observed in experiments to
melt directly to the disordered phase (the Flory parameter
� is inversely proportional to temperature T) [14], whereas
SCFT predicts that G transforms to two intermediate or-
dered phases before melting [15]. Capturing this type of
behavior requires a quantitative treatment of field fluctua-
tions that is beyond current analytical methods, but is
accessible in full field-theoretic simulations. However,
prior to this work, there was no strategy for accessing
relative and absolute free energies of competing phases
within FTS.
Here we show that the thermodynamic integration

method of Frenkel and Ladd [6] can be adapted to compute
absolute free energies in field-theoretic simulations. Key to
this adaptation is an Einstein crystal reference state for the
discrete field theory consisting of uncoupled harmonic
oscillators placed at collocation points within the simula-
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tion cell. Because the symmetry of the field collocation
lattice does not restrict the symmetries of the fluid and
solid phases that can be described by the theory, unlike the
original Frenkel-Ladd approach, our method is equally
applicable to disordered fluid phases and ordered meso-
phases. An alternative method based on the application of
an external ordering field was recently proposed by Müller
and Daoulas [16], although it has yet to be implemented in
the FTS context and is limited to the computation of
relative free energies between ordered and disordered
phases.

We describe our technique for an AB diblock copolymer
melt and adopt the notation of a recent book on the subject
(Model E in Ref. [9]). In the canonical ensemble of this
model, n incompressible AB diblock copolymers each of
length N reside in a system of volume V. Each chain is
modeled as a continuous Gaussian chain with a volume
fraction of A segments given by f, and the interactions
between the A and B segments are described by the Flory
parameter, �. The partition function Zðn; V; TÞ of this
model can be recast in field-theoretic form, Z ¼

R
DW� expð�H½W��Þ, by introducing two auxiliary po-

tential fields, W�ðxÞ. The effective Hamiltonian is

H½W�� ¼ C
Z
dx

�
W2�
�N

� iWþ
�
� C ~V lnQ½W��: (1)

Here, positions x have been expressed in units of the

unperturbed polymer radius-of-gyration Rg � N1=2, and

the dimensionless system volume is ~V ¼ V=R3
g. The pa-

rameter C ¼ nR3
g=V is a reduced polymer concentration,

and Q½W�� is the partition function of a single polymer
chain experiencing the fields W�ðxÞ. This object can be
computed deterministically by means of Q½W�� ¼
~V�1

R
dxqðx; 1Þ, where the propagator qðx; sÞ satisfies

the Feynmann-Kac equation @sq ¼ r2q�  q with
qðx; 0Þ ¼ 1, and  is a block-specific potential field given
by

 ðx; sÞ �
�
iWþðxÞ �W�ðxÞ 0< s � f
iWþðxÞ þW�ðxÞ f < s < 1

: (2)

Both the energy functional H and statistical weight
expð�HÞ of the field theory are complex.
As described above, polymer field theories can be simu-

lated in either the mean-field approximation (SCFT) or by
importance sampling the full partition function (FTS). The
SCFTapproach assumes that Z is dominated by a single set
of field configurations W��ðxÞ, which satisfy the saddle
point equations �H=�W�ðxÞ ¼ 0. In the above model,
the SCFT free energy H½W��� is asymptotically exact for

C� N1=2 ! 1, but is a poor approximation to the exact
free energy F ¼ � lnZ outside of this limiting regime. In
these cases, an FTS approach can be employed with a
sampling technique suitable for complex weights. One
such method, complex Langevin (CL) sampling [17,18],
has been shown to be particularly effective in FTS studies
of polymers [7,9]. The CL method involves generating a
stationary Markov chain of complex field configurations
(used to compute equilibrium averages) by numerical in-
tegration of the following fictitious stochastic dynamics

@W�ðx; tÞ
@t

¼ � �H½W��
�W�ðx; tÞ þ �ðx; tÞ; (3)

where �ðx; tÞ is a real, Gaussian white noise with the
average properties h�ðx; tÞi ¼ 0 and h�ðx; tÞ�ðx0; t0Þi ¼
2�ðx� x0Þ�ðt� t0Þ. We note that advanced algorithms
are needed for stochastic integration of the CL equations
to ensure stability and accuracy [19].
In adapting the Frenkel-Ladd [6] approach to a field-

based simulation, we require an appropriate Einstein crys-
tal reference state. This can be described in the continuum
field theory by a reference Hamiltonian Href ¼
H� þ R

dx½�þð�WþÞ2 þ ��ð�W�Þ2�, where H� ¼
H½W��� is the mean-field free energy corresponding to a
mean-field solution W��, �i > 0 are real ‘‘spring con-
stants,’’ and �WiðxÞ � WiðxÞ �W�

i ðxÞ. In the correspond-
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FIG. 1. Mean-field (a) and experimental (b) phase diagrams
for an AB diblock copolymer melt in the coordinates of �N
(product of Flory � parameter and total copolymer length N) and
the A block volume fraction f. Labeled phases are bcc spheres
(S), close-packed spheres (Scp), hex cylinders (C), cubic gyroid

(G), and lamellae (L). Numerical SCFTwas used to calculate the
mean-field phase diagram. The experimental results are for the
polystyrene-polyisoprene system [14]. Reproduced with permis-
sion from [15].
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ing discrete field theory used in numerical simulations, the
W�ðxÞ fields are replaced by twoM-vectors of field values
(W�;j, j ¼ 1; . . . ;M) on an M-site collocation grid of

uniform spacing �x. The reference state of the discrete
model is thus Href ¼ H� þ ð�xÞ3Pi

P
j �ið�Wi;jÞ2 and

describes a harmonic crystal of 2M uncoupled oscillators.
The absolute free energy of this state, Fref , can be deter-
mined analytically by evaluating 2M uncoupled Gaussian
integrals for each W�;j degree of freedom.

This reference state can be applied in FTS-CL simula-
tions by defining a new Hamiltonian ~H that depends line-
arly on a coupling parameter � 2 ½0; 1�,

~H½W�;�� ¼ ð1��ÞH½W�� þ�Href½W��: (4)

At � ¼ 1, the system is fully harmonic and has the refer-
ence free energy F�¼1 ¼ Fref . In the other limit of � ¼ 0,
~H reduces to the Hamiltonian H of the fully interacting
field theory. FTS-CL simulations of the extended model
with statistical weight expð� ~HÞ can be carried out by
simply replacing the force term in Eq. (3) with
� ~H=�W�. CL-computed averages over field configura-
tions using this extended statistical weight at prescribed
� are denoted by h. . .i�. The absolute free energy of the
original field theory can be obtained by a simple thermo-
dynamic integration between the � ¼ 0 and 1 states,

F ¼ F�¼0 ¼ Fref �
Z 1

0
d�

�
@ ~H½�; W��

@�

�
�
: (5)

Once the free energy of a single point in the parameter
space of the model has been determined, other thermody-
namic integration paths can be followed to map the entire
free energy landscape.

A few practical matters remain to be described. Firstly,
the phase can be controlled by selecting among multiple
solutions of the SCFT equations. Numerical mean-field
solutions W��ðxÞ possessing the symmetries of all compet-
ing phases in the phase diagram can be inexpensively
generated [9,15]. By pinning the harmonic reference state
to the saddle point for a phase that is stable or metastable in
the � ¼ 0 state, the targeted phase will usually be pre-
served in simulation trajectories conducted along the �
integration path. Secondly, optimal values of the spring
constants �i [i.e., values that make the integrand of Eq. (5)
slowly varying in �] can be obtained by a preliminary
simulation of the � ¼ 0 model to assess the mean-squared
strength of field fluctuations [6]. Finally, most polymer
field theory models have ultraviolet divergences that reflect
a sensitivity of CL-derived averages to the lattice spacing
�x. Thus, while our method yields absolute free energies
of phases of the discrete field theory, the values can change
rapidly upon lattice refinement. We have found that these
spurious contributions are readily extracted by regularizing
the free energies with that of a common phase (e.g., a
disordered fluid phase) simulated on the same lattice.
Such regularized free energies converge smoothly to finite

values upon decreasing �x. For details, see Fig. 1 in the
supplementary information [20].
To demonstrate the technique, we have chosen to inves-

tigate the effect of including fluctuations on the phase
diagram for an AB diblock copolymer melt. In the mean-
field limit of C! 1, the phase diagram [Fig. 1(a)] can be
completely characterized by two parameters: �N and f
[12,21]. However, as C is reduced to values typical in
experiment (10–100), fluctuation corrections to the mean-
field diagram become significant [22]. In Fig. 2 we present
the shift of the order-disorder transition (ODT) of a diblock
copolymer melt with C ¼ 50. The simulations were con-
ducted in periodic cells using plane-wave-based spectral
collocation methods and a semi-implicit stochastic inte-
gration of the CL equations [19]. In this preliminary study,
the simulation cell for each ordered phase was chosen as
one stress-free parallelepiped unit cell obtained from
SCFT. The disordered phase was simulated using multiple
cells of identical size and shape to the counterpart ordered
phase along the order-disorder boundary. This procedure
allowed for optimal cancellation of ultraviolet divergences.
While a comprehensive finite-size analysis was not con-
ducted, we confirmed at three different f values that use of
larger simulation cells containing 23 unit cells of the
ordered phases produced insignificant changes in the com-
puted ODT.
The phase boundaries were determined by first calculat-

ing F for a given phase by a � integration at a reference
�N [by means of Eq. (5)], then integrating along a second
trajectory in 1=ð�NÞ while holding C and f fixed. The
phase transitions were located by the condition Ford ¼
Fdis. For select values of f, these phase boundaries were
verified by a direct calculation of F using only a � inte-
gration from a mean-field metastable disordered phase.
Examples of locating the L-D and G-D transitions and a
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FIG. 2. Comparison of the mean-field (curves) and FTS-CL
simulated (symbols) order-disorder boundaries for a diblock
copolymer melt at C ¼ 50. The symbols denote boundaries
between the disordered phase (D) and the C (circles), G (dia-
monds), and L (squares) mesophases.
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description of parameters and methods used in the simu-
lations are provided in the supplementary information [20].

The estimated errors are within the size of the symbols,
although we did not conduct a comprehensive finite-size
analysis which would involve simulations of large systems
with multiple unit cells of the L, G, and C mesophases
[20]. As in the experimental phase diagram of Fig. 1(b),
and unlike the SCFT diagram, the L, G, and C phases are
predicted to melt directly into the disordered phase and the
phase envelope has been shifted to higher values of �N.
Similar results were obtained previously using a large C
asymptotic Hartree analysis for weakly asymmetric di-
blocks [22] as well as the Ia�3d [23] and Fddd [24] phases.
This shift has also been studied using lattice-based
Monte Carlo simulations [25]. However, the present
method is not restricted to either weak fluctuations or
diblock asymmetry (large C or jf� 1=2j � 1). When
put in the context of Fredrickson-Helfand theory [22], the
simulations here show a larger shift in the ODT than
predicted around f ¼ 0:5. This disagreement may stem
from the approximations made in the Hartree analysis.
Indeed, the present study is not limited to field fluctuations
about the leading harmonics of the saddle-point solution.

An attractive feature of our thermodynamic integration
method is its general applicability to a wide range of
polymeric fluids of arbitrary complexity. Moreover, the
technique allows for quantitative investigations of phase
transitions without the need to simulate the transition
itself—hence avoiding long simulation times and hyste-
retic effects. The method also avoids the use of order
parameters, suitable choices of which are often difficult
to identify and expensive to compute.

On the downside, free energy estimation with the tech-
nique requires intensive numerical simulations that are
subject to several potential sources of error, most notably
statistical sampling and finite-size effects. We have seen
that ultraviolet divergences can be approximately canceled
by use of appropriate reference simulations on the same
lattice, but much more remains to be understood about how
to properly deal with these singularities in a numerical
context as the continuum limit is approached.

In summary, we have developed a thermodynamic inte-
gration method for determining absolute and relative free
energies of arbitrary phases in field-based simulations.
While generally applicable to classical fluid models, the
technique should be most valuable in the study of meso-
structured polymeric fluids. Beyond the diblock copolymer
melt examined here, we expect that the method will aid the
development of accurate phase diagrams for systems rang-
ing from complex block copolymers and polymer blends to
multicomponent polymer solutions, liquid crystalline pol-
ymers, and polyelectrolytes.
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