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2Laboratoire de Spectrométrie Physique, Université J. Fourier and UMR5588 CNRS, F-38402 Saint Martin d’Hères, France

3Dipartimento di Chimica, Universitá di Perugia, I-06100 Perugia, Italy
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We present a 14N nuclear magnetic resonance study of a single crystal of CuBr4ðC5H12NÞ2 (BPCB)

consisting of weakly coupled spin-1=2 Heisenberg antiferromagnetic ladders. Treating ladders in the

gapless phase as Luttinger liquids, we are able to fully account for (i) the magnetic field dependence of the

nuclear spin-lattice relaxation rate T�1
1 at 250 mK and for (ii) the phase transition to a 3D ordered phase

occurring below 110 mK due to weak interladder exchange coupling. BPCB is thus an excellent model

system where the possibility to control Luttinger liquid parameters in a continuous manner is demon-

strated and the Luttinger liquid model tested in detail over the whole fermion band.

DOI: 10.1103/PhysRevLett.101.137207 PACS numbers: 75.10.Jm, 75.40.Cx, 76.60.�k

The interaction between quantum particles plays a cru-
cial role in one dimension (1D), where its interplay with
quantum fluctuations leads to a state described as a
Luttinger liquid (LL) [1]. Low-energy physics of the LL
is fully characterized by two interaction dependent LL
parameters: the velocity of excitations u and the dimen-
sionless exponent K. Correlation functions decay as power
laws, with exponents which are simple functions of K. The
LL model has been shown to apply to a growing number of
1D systems, such as organic conductors [2], quantum wires
[3], carbon nanotubes [4], edge states of quantum Hall ef-
fect [5], ultracold atoms [6], and antiferromagnetic (AFM)
spin chain [7] or spin ladder systems [8]. Several character-
istic features of the LL model have been observed in these
systems, such as the power law behavior of some correla-
tion or spectral functions. However, since the details of the
interaction are rarely known, only a theoretical estimate of
the power law exponents is usually possible. A precise
quantitative check of the LL model is thus still missing.

The obstacle can be overcome in spin ladder systems.
Namely, a spin-1=2 AFM ladder in an external magnetic
field H maps essentially onto a 1D system of interacting
spinless fermions [1,9–11], where H acts as a chemical
potential. The interaction term in the fermion picture is
uniquely determined by the exchange coupling constants,
which can be experimentally extracted [J? on the rungs
and Jk on the legs of the ladder; see Fig. 1(a)], and by H,

which controls the filling of the fermion band. By increas-
ingH the spin gap between the singlet ground state and the
lowest triplet (Sz ¼ �1) excited states of the spin ladder
decreases. It closes at Hc1, where the ladder enters the
gapless phase corresponding to the partially filled fermion
band. At Hc2 the ladder gets fully polarized and the gap

reopens. Once J? and Jk are known, the LL parameters can

be obtained numerically for arbitraryH. The associated LL
prediction can then be checked quantitatively over the
whole fermion band, which extends between the critical
fields Hc1 and Hc2.
Suitable spin ladder systems are rare, either because of

unattainable critical fields or because of the presence of
anisotropic interactions, such as the Dzyaloshinski-Moriya
interaction [12], as is the case in extensively studied
Cu2ðC5H12N2Þ2Cl4 [13]. Recently, CuBr4ðC5H12NÞ2
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FIG. 1 (color online). (a) A ladder formed by the supposed
exchange interactions, JijSi � Sj, between S ¼ 1=2 spins of

Cu2þ ions in the crystal structure of BPCB. Solid thick blue
lines and dashed thick blue lines stand for J? and Jk, respec-
tively. The 10 protons attached to the C atoms are not shown.
(b) 14N NMR spectra at 120 and 40 mK recorded at H ¼ 9:0 T.
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(BPCB) [14] was identified as a good candidate. Namely,
low-temperature magnetization data were well described
by the XXZ chain model [15] in the strong-coupling limit
(J? � Jk) of a ladder [10,13,16]. In addition, the results of
thermal expansion and magnetostriction experiments were
explained within the free fermion model and in more detail
with quantum Monte Carlo calculations for spin ladders
[17,18]. In this Letter we present a detailed 14N nuclear
magnetic resonance (NMR) study of BPCB revealing for
the first time the occurrence of the field induced 3D mag-
netic order below 110 mK. We show that the LL model
completely accounts for the experimental behavior of
BPCB in the gapless phase. The determined phase diagram
and field variation of the order parameter are perfectly
described in the framework of weakly coupled LLs. The
importance of these results is twofold: (i) they show that
the whole physics of coupled spin ladders can be captured
in a single theory based on LLs, and (ii) they provide the
first quantitative check of the LL model.

In 14N NMR experiments we used a single crystal of
BPCB with dimensions 3:5� 2� 4 mm3. As shown in
Fig. 1(a), the pairs of spin-1=2 Cu2þ ions (spin dimers)
in the crystal structure of BPCB are stacked along the
crystallographic a axis to form ladders [14]. Each unit
cell contains two rungs of two different ladders (denoted
by I and II), which are crystallographically equivalent, but
become physically inequivalent when the external mag-
netic field H is applied in an arbitrary direction. There are
only two crystallographically inequivalent nitrogen (N)
sites per ladder in a unit cell: N(1) is located close to the
rung and N(11) close to the leg of the ladder [Fig. 1(a)].
Since 14N has spin I ¼ 1 and thus a quadrupole moment,
each site gives rise to a pair of 14N NMR lines (doublet),
split by the quadrupole coupling with the local environ-
ment. Therefore, 14N NMR spectrum [upper spectrum in
Fig. 1(b)] consists of four doublets, for two sites in each of
the two ladders. We oriented the sample so that the external
magnetic field lay in the a�b plane (a� ? b; c), at an angle
of 9� to the b axis. In this orientation, the N(1) doublets are
well resolved, while the N(11) doublets overlap [Fig. 1(b)].
All the measurements presented here were performed on
the Nð1ÞI lines.

The magnetization of the Cu2þ ions is detected via the
hyperfine coupling to the 14N nuclei. It is easily recon-
structed due to the inversion center in the middle of each
rung [14]. Any uniform magnetization of Cu2þ ions shifts
the average position of the NMR quadrupole doublet with
respect to the Larmor frequency. Any staggered (i.e.,
AFM) magnetization of Cu2þ ions, however, breaks the
inversion symmetry between the pairs of equivalent N
sites. This doubles the number of inequivalent N sites and
each NMR line splits symmetrically in two lines. The
associated hyperfine shift and splitting are proportional to
the uniform and staggered magnetization of Cu2þ ions,
respectively. Figure 1(b) illustrates the emergence of the
staggered magnetization in BPCB atH ¼ 9:0 T on cooling
from 120 to 40 mK. Its origin is discussed later.

Next we check whether our longitudinal (parallel to H)
uniform magnetization mzðHÞ data are well described in
the XXZ chain model. Figure 2(a) shows mzðHÞ (per spin)
measured at 40 mK via the hyperfine shift of Nð1ÞI NMR
lines, from which we extract the values of the critical
fields: Hc1 ¼ 6:703� 0:008 T and Hc2 ¼ 13:888�
0:006 T. Instead of the square-root singularities expected
for a perfect 1D system, very close to the critical fields we
observe a linear mzðHÞ dependence [Fig. 2(a) inset], a
signature of weak interladder (3D) exchange coupling
[10]. As this 3D regime is very narrow, by fitting mzðHÞ
data with a phenomenological function having square-root
singularities at mz ¼ 0 and 0.5 [Fig. 2(a) inset], we can
estimate the values of the corrected, ‘‘1D’’ critical fields
pertaining to an isolated ladder: H1D

c1 ¼ 6:763 T and

H1D
c2 ¼ 13:828 T. With g ¼ 2:176 corresponding to our

sample orientation [14] this yields [19] J? ¼ 12:9 K and
Jk ¼ 3:6 K, hence J?=Jk ¼ 3:6, in agreement with recent

determination [17,18]. With these values we perform the
density matrix renormalization group (DMRG) calcula-
tion of mzðHÞ at T ¼ 0 for a single ladder and find an ex-
cellent agreement with our experimental data. As shown in
Figs. 2(a) and 2(b), the slight asymmetry of the curve about
its midpoint at mz ¼ 0:25 is nicely reproduced since we
take into account also the upper two triplet states of each
dimer (Sz ¼ 0; 1). These are neglected in the strong-
coupling treatment (J? � Jk) leading to the XXZ chain
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FIG. 2 (color online). (a) Magnetic field dependence of the
longitudinal uniform magnetization mz per Cu2þ ion at
40 mK (�). Inset shows linear mzðHÞ dependence very close
to Hc2 (solid line) and the determination of H1D

c2 (dashed line).

The data are compared to the result of the DMRG calculation for
J?=Jk ¼ 3:6 (solid line) and to the prediction of the XXZ chain

model (dashed line), both at T ¼ 0. (b) Difference between each
prediction and the experimental data. (c) Variation of the LL
parameters KðHÞ and uðHÞ (in kelvin units) over the fermion
band as calculated for J?=Jk ¼ 3:6 (solid line) and for the XXZ
chain model (dashed line).
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model [10]. The corresponding curve is symmetric about
its midpoint, in worse agreement with our experimental
data. However, mzðHÞ as a thermodynamic quantity is not
very sensitive to the model. Once the coupling ratio J?=Jk
is fixed, the variation of the LL parameters with H is
completely determined and the LL theory is left without
any adjustable parameter. For an isolated ladder with
J?=Jk ¼ 3:6 we numerically calculate KðHÞ and uðHÞ
(in kelvin units), combining DMRG method with boson-
ization as in Ref. [11]. The result is displayed in Fig. 2(c)
together with the corresponding result in the XXZ chain
model (from Ref. [10]). Close to H1D

c1 (H1D
c2 ) the LL ex-

ponent approaches the value K ¼ 1 of noninteracting fer-
mion system indicating a nearly empty (full) fermion band.

The LL behavior is tested via the dynamical spin-spin
correlation functions, which are experimentally accessible
through NMR observables. We focus on three such observ-
ables, starting with the nuclear spin-lattice relaxation rate
T�1
1 . At low temperatures T�1

1 probes exclusively Cu2þ
spin dynamics, namely, its low-energy (! ! 0) part [20]
corresponding to the long time behavior of the local spin-
spin correlation functions. For the above determined range
of KðHÞ, by far the biggest contribution to T�1

1 at low
temperature comes from the transverse (perpendicular to
H) staggered correlation [10], and we find it to be [1,10]

T�1
1 ¼ @�2A2
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where Ax
0 is the amplitude of the correlation function,

�=ð2�Þ ¼ 3:076 MHz=T is 14N nuclear gyromagnetic
ratio, A? the transverse hyperfine coupling constant,
and Bðx; yÞ ¼ �ðxÞ�ðyÞ=�ðxþ yÞ. Figure 3(a) shows 14N
T�1
1 ðHÞ dependence measured in the gapless phase of

BPCB at 250 mK, well above the 3D ordering temperature.
Its concave shape reflects the increased 1D fermion density
of states close to the critical fields. Using the previously
calculated KðHÞ, uðHÞ [from Fig. 2(c)], and Ax

0ðHÞ (calcu-
lated along with K and u) for J?=Jk ¼ 3:6, T�1

1 ðHÞ from
Eq. (1) is compared to the data by adjusting a single scaling
factor A2

? [Fig. 3(a)]. Very good agreement over the whole

field range provides a remarkable confirmation of the LL
model. Moreover, the utilized value A? ¼ 570 G agrees
with that obtained from direct 14N NMR determination
[21]. In contrast, the curve obtained in the XXZ chain
model (with the same A?) fails to reproduce the biased
shape of T�1

1 ðHÞ [Fig. 3(a)]. This demonstrates the sensi-
tivity of the observable T�1

1 ðHÞ to the applied set of LL
parameters KðHÞ, uðHÞ and, consequently, to the coupling
ratio J?=Jk.

The (dominant) transverse staggered spin-spin correla-
tion function diverges with decreasing temperature, which
leads at low enough temperature to a 3D ordering due to
weak interladder exchange coupling [10]. The associated
order parameter is a transverse staggered magnetizationmx

(per spin) [22], measured via the hyperfine splitting of the

Nð1ÞI NMR lines. To map the boundary between the 3D
ordered phase and the 1D LL phase, we determine the
temperatures TcðHÞ, at which this splitting vanishes
[Fig. 3(b)]. Since the whole phase boundary lies below
110 mK (	Jk ¼ 3:6 K), we expect that the interladder

coupling (i.e., the coupling between the LLs) is small and
treat it in the mean-field approximation leading to [10]

Tc¼ u
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: (2)

Here J0 is the exchange coupling between the Cu2þ ions in
neighboring ladders and z the coordination number.
Although exchange paths between the ladders have not
been identified yet, the structure of BPCB suggests that
z ¼ 4. Using KðHÞ, uðHÞ, and Ax

0ðHÞ for J?=Jk ¼ 3:6, we
compare TcðHÞ from Eq. (2) to the experimental data by
adjusting a single scaling parameter J0 [Fig. 3(b)]. For
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FIG. 3 (color online). Magnetic field dependence of (a) 14N
T�1
1 at 250 mK (�), in the 1D LL phase, (b) the temperature of

the transition between the 3D ordered phase and the 1D LL
phase (�), (c) the transverse staggered magnetization mx per
Cu2þ ion at 40 mK (�) and its extrapolation to zero
temperature (d), all measured on Nð1Þ1 site as described in
the text. Each data set is compared to the corresponding pre-
diction of the LL model based on KðHÞ and uðHÞ [from Fig. 2
(c)] for J?=Jk ¼ 3:6 (solid red line) and to the prediction of the

simplified XXZ chain model (dashed green line). The only
adjustable parameter in each case is an overall scaling factor.
Dotted blue line in (c) is the result of the DMRG calculation.
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J0 ¼ 20 mK [23] we obtain an excellent agreement, with
faithfully reproduced biased shape. The prediction of the
XXZ chain model (with the same J0) is considerably differ-
ent in shape, showing that TcðHÞ is another observable very
sensitive to the applied set of LL parameters.

The field dependence of the order parameter mxðHÞ is
measured via the hyperfine splitting of the Nð1ÞI NMR
lines at 40 mK [open circles in Fig. 3(c)]. The data are
compared to the T ¼ 0 prediction, which we obtain in the
mean-field treatment based on weakly coupled LLs:

mx ¼ FðKÞ
ffiffiffiffiffiffi
Ax
0

q �
�zJ0Ax

0

2u

�
1=ð8K�2Þ

; (3)

where, using the results from Ref. [24],

FðKÞ¼
( �2

sin½�=ð8K�1Þ

8K

8K�1½�½1�ð1=8KÞ

�ð1=8KÞ 
8K=ð8K�1Þ

�ð 4K
8K�1Þ2�ð16K�3

16K�2Þ2
)ð8K�1Þ=ð8K�2Þ

:

Taking againKðHÞ, uðHÞ, Ax
0ðHÞ for J?=Jk ¼ 3:6 and J0 ¼

20 mK, the analytical mxðHÞ dependence defined by
Eq. (3) is fixed. As the proportionality constant between
mx and the measured hyperfine splitting is not known, in
Fig. 3(c) we scale the data in vertical direction to match the
analytical curve at the maximum near 7.5 T. The trend for
an overall field dependence is nicely reproduced except for
some discrepancy between 10 and 13 T. However, the
theoretical T ¼ 0 prediction is here compared to the data
recorded at 40 mK, which may not be fully saturated to the
zero temperature limit. Indeed, an extrapolation to T ¼ 0
[solid circles in Fig. 3(c)] from the temperature depen-
dence measured above 40 mK indicates that the agreement
is better than what it appears to be. In addition, we calcu-
late mxðHÞ by DMRG, treating again the interladder cou-
pling with J0 ¼ 20 mK in the mean-field approximation.
As shown in Fig. 3(c), the result is hardly distinguishable
from the analytical curve.

The field induced 3D magnetic ordering in the gapless
phase of BPCB below 110 mK is thus perfectly described
in the framework of weakly coupled 1D systems, treated as
LLs. Both the phase boundary TcðHÞ and the field variation
of the order parameter mxðHÞ exhibit a biased shape. This
contrasts with the dome shape of both observables from
essentially 3D spin dimer systems, such as TlCuCl3 [25]
or BaCuSi2O6 [26]. Moreover, mxðHÞ in BPCB is not
proportional to TcðHÞ, contrary to what is expected for
the standard mean-field description of a phase transition
in isotropic 3D systems. This is another signature of the
underlying 1D physics. However, at low enough tempera-
ture, close to the critical fields the LL description in the
gapless phase collapses as the system restores its full 3D
character [10]. In this region the low-temperature 3D mag-
netic ordered state is predicted to be a Bose-Einstein
condensate [10,27] leading to the linearmzðHÞ dependence
[10], which is indeed observed in our experiment.

In summary, we have investigated the experimental
behavior of BPCB in the gapless phase, including 3D

magnetic ordering occurring below 110 mK. All our ex-
perimental results are perfectly described in a single theory
based on LLs, with no adjustment or fitting of the LL
parameters. Magnetic field variation of T�1

1 , of the tran-
sition temperature, and of the order parameter (at T ¼ 0),
which are shown to depend substantially on the coupling
ratio J?=Jk, provide sensitive probes for the behavior of

the dominant spin-spin correlation function and its role in
low-temperature 3D magnetic ordering. A single set of LL
parameters is shown to control all three observables, which
is an essential feature of the LL model.
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