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A new contribution to friction is predicted to occur in systems with magnetic correlations: Tangential
relative motion of two Ising spin systems pumps energy into the magnetic degrees of freedom. This leads
to a friction force proportional to the area of contact. The velocity and temperature dependence of this
force are investigated. Magnetic friction is strongest near the critical temperature, below which the spin
systems order spontaneously. Antiferromagnetic coupling leads to stronger friction than ferromagnetic
coupling with the same exchange constant. The basic dissipation mechanism is explained. A surprising
effect is observed in the ferromagnetically ordered phase: The relative motion can act like a heat pump
cooling the spins in the vicinity of the friction surface.
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As friction is an intriguingly complex phenomenon of
enormous practical importance, the progress in experimen-
tal techniques on the micro- and nanoscale [1,2] as well as
the improved computational power for atomic simulations
[3-5] has led to a renaissance of this old research field in
recent years. Currently a large variety of microscopic
models compete with one another [1,6,7]. Major compli-
cations are wear, plastic deformation at the contact, impu-
rities, and lubricants. It is unlikely that in the general case
only a single dissipation mechanism will be active. Defect
motion, phononic and electronic excitations may be in-
volved in a very complex blend. To reduce these compli-
cations and to focus on the elementary dissipation
processes, increasing attention has been paid to noncontact
friction: It can be measured as damping of an atomic force
microscope tip which oscillates in front of a surface with-
out touching it [8,9]. For this setup, too, phononic [10,11]
as well as electronic dissipation mechanisms [12,13] have
been discussed. Recently, a Heisenberg model with mag-
netic dipole-dipole interactions was studied at zero tem-
perature as a model for magnetic force microscopy. In this
case the moving tip excites spin waves, which dissipate
part of the energy [14].

In this Letter a different mechanism is considered, by
which the spin degrees of freedom of an Ising model
contribute to friction. We imagine two magnetic materials
with planar surfaces sliding on each other. Of course, if one
of the materials is metallic, their relative motion will
induce eddy currents [15]. The corresponding Joule heat
is commonly associated with the term ‘““magnetic friction,”
although the energy is not dissipated into the spin degrees
of freedom, which can even be considered as frozen. By
contrast, here we are interested in the case that both mate-
rials are nonmetallic (e.g., magnetite Fe;O,). To highlight
the role of the spin degrees of freedom we do not take
phononic and electronic excitations into account explicitly,
but regard them as a heat bath of fixed temperature 7" to
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which all spins are coupled. Energy dissipation in Ising
spin systems was studied previously [16,17], but there it
was due to an oscillating magnetic field rather than the
tangential relative motion of two lattices. The competition
between the time scales for driving the system out of
equilibrium and for its relaxation gave rise to hysteretic,
and hence dissipative behavior. These time scales play also
a role for magnetic friction, as we will show.

Specifically, we present Monte Carlo (MC) simulation
results for a two-dimensional Ising square lattice with
periodic boundary conditions. Each of the N lattice sites
carries a classical spin variable S; which can take the values
+1. The Hamiltonian is H = —JZ<,-J>S,~SJ-, where (i, j)
denotes nearest neighbors, and J is chosen as energy
unit. Coupling to a heat bath of constant temperature T
lets the spin configuration C relax towards thermal equi-
librium. The relaxation kinetics are determined by the
transition rate w(C — C’) to a new configuration C’, in
which one randomly chosen spin is flipped. We consider
fast relaxation with Metropolis rate [18]

wn(C — C') = 15 ' min(1, e~ PAE) (1)
and slow relaxation with Glauber rate [18]
wg(C — C') = wy(C— C)/(1 + e FIRE) - (2)

where B = (kzT)~'. The energy difference AE =
E(C) — E(C) is received from (AE > 0), respectively,
transferred to (AE < () the heat bath, when the spin is
flipped. #, = 107 s [19] is the typical time for relaxation
of a spin into the direction of the local Weiss-field.

The system is constantly driven out of equilibrium in the
following way: The lattice is cut parallel to an axis into an
upper and a lower half. The former is displaced by one
lattice constant a = 107'% m in regular time intervals a/v,
where v is the sliding velocity (in the following given in
natural units a/f,). This means that N/v random sequen-
tial spin updates (i.e., 1/v Monte Carlo steps) are followed
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by a rigid translation of the upper half by one lattice
constant parallel to the cut. v =1 corresponds to
1072 m/s. (Note that due to the periodic boundary con-
ditions there is a second slip plane separating the upper half
of the simulation cell from the periodic image of the lower
half.) The exchange interaction J is the same, no matter
whether the interacting spins are on the same or on differ-
ent sides of the cut. This has the advantage that the relative
velocity v and the temperature T (in natural units |J|/kp)
are the only parameters in the model. In the following we
evaluate the accumulated energy (divided by two, because
of the two equivalent slip planes) that has been exchanged
with the heat bath during the time interval ¢, AEy (), for
different sliding velocities v and temperatures 7. We first
present our results for ferromagnetic coupling, J > 0. In
the end we also discuss what is different for antiferromag-
netic coupling, J < 0.

Is there any energy dissipation within this simple model
at all? To answer this question we first simulated a system
consisting of 80 X 80 spins thermalized for 200 MC steps
per spin at a temperature 7 = 2.5 above the critical tem-
perature T¢ = 2/1In(v/2 + 1) [20] (initial configuration).
Figure 1 shows the energy exchange per spin with the
heat bath for two cases: Without relative motion (v = 0)
of the half-spaces AE,,; fluctuates around O; i.e., no
energy is dissipated. Switching on the relative motion
with a velocity v =1 leads to a linear increase of
AE, (7). The total system energy E per spin stays con-
stant at about the same value in both cases. This means that
the sliding system quickly develops a steady state, where
energy is transferred continuously to the heat bath. The
slope in Fig. 1 is the constant dissipation rate P =
AE, /At Tt is directly connected to the friction force F
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FIG. 1. Accumulated energy AEy,; per spin which is trans-
ferred to the heat bath during a time interval ¢, without motion
(v=0) and with motion (v =1) of the two half-spaces.
Simulation with Metropolis rates. The total energy per spin
fluctuates around the exact value E/N = —1.10608 [20] in
both cases.

by P = Fv. We conclude that the Ising model gives rise to
a truly magnetic friction force: The relative motion pumps
energy into the spin degrees of freedom, which in the
steady state is then transferred further into the heat bath.

The magnetic friction force turns out to be proportional
to the length L of the periodic cell along the direction of the
cut through the two-dimensional lattice. On the other hand,
varying the system size perpendicular to the slip plane does
not change the above results, as long as it remained larger
than about 20 lattice constants. This shows that whatever
energy the relative motion pumps locally into the spin
degrees of freedom near the slip plane, gets transferred
completely to the heat bath before it can drive more distant
parts of the system out of equilibrium.

Figure 2 shows that the dissipation rate for small veloc-
ities starts out linearly, with a slight upward curvature, and
saturates for large velocities. The saturation is expected
when the velocity times the relaxation time 7 becomes
larger than the correlation length & [21], i.e., when v >
&/7. Then the lower half-space is essentially confronted
with uncorrelated configurations of the upper half-space,
and a further increase of v does not change anything. For
Glauber dynamics the relaxation time is larger by a factor
of about 1.5 than for Metropolis dynamics. This explains
the difference between the curves in Fig. 2: If one rescales
time by this factor, i.e., multiplies velocity and dissipation
rate by 1.5, the curve for Glauber dynamics is shifted such
that it essentially coincides with the one for Metropolis
dynamics. For small velocities the linear v dependence in
Fig. 2 implies that the magnetic friction force approaches a
constant, Fy. For T' = 2.5 the velocity independent part of
the magnetic frictional shear stress has the value Fy/L =
0.114 £ 0.004. It is the same for Metropolis and Glauber
dynamics.
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FIG. 2. Energy dissipation rate P per unit length as a function
of the relative velocity v of the two half-spaces (averaged over
100 runs). Dashed line: Metropolis rates. Dotted line: Glauber
rates. Solid line: Exact solution for the limit v — 0.
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Fy/L can be calculated analytically in the quasistatic
limit, v — 0, where the spin system has time enough to
relax back into equilibrium after each displacement of the
upper half. The energy of the spin configuration immedi-
ately after a displacement minus the equilibrium energy
must be transferred to the heat bath during the time interval
a/v. The rigid shift of all spins in the equilibrated upper
half by one lattice constant places former next nearest
neighbors in nearest neighbor positions on opposite sides
of the slip plane. Thus the dissipated energy per unit length
a (i.e., the friction force) can simply be expressed as JL
times the nearest neighbor spin correlation function minus
the next nearest neighbor spin correlation function. Both
are known analytically; see, e.g., Egs. (4.5) and (4.9) of
[20]. At T = 2.5 this gives the value F,/L = 0.117 in
good agreement with the numerical result. For general
temperature one obtains the solid curve in Fig. 3.

According to the picture of Bowden and Tabor [22] also
Coulomb friction is independent of v and proportional to
the real contact area, which due to surface roughness is
smaller than the sliding surface macroscopically appears to
be, and grows proportional to the normal load. Therefore,
the velocity independent part of the magnetic friction force
behaves like Coulomb friction. How does it compare to
typical values for solid friction? The above results show
that the magnetic shear stress o, = F,/L is of the order of
0.1 for the two-dimensional Ising model. The unit is J/a?,
the exchange constant divided by the lattice constant
squared. If we regard the two-dimensional Ising model as
a slice of thickness a of a three-dimensional system, then
we may assume that the magnetic shear stress for a three-
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FIG. 3. Temperature dependence of the friction force per unit
length, F/L. Solid line: Exact quasistatic limit v — 0.
Simulation results with Metropolis rates (circles) for v = 0.1
agree with the quasistatic limit. For v = 1 the friction forces for
Metropolis rates (dashed line), respectively, Glauber rates (dot-
ted line) are larger corresponding to the upward curvature in
Fig. 2. All data are averaged over 100 runs. The critical tem-
perature is indicated by the dashed vertical line.

dimensional Ising model is of the order of o3, = 0.1J/a°.
Inserting typical values (J = 0.6 X 10720 Joule, a = 3 X
10719 m) one gets the estimate 0,3, = 20 MPa. This is a
surprisingly large value. Ordinary solid friction shear
stresses are given by o, couomp = M0 according to the
Bowden-Tabor-theory, where a typical value for the fric-
tion coefficient is u = 0.2, and the yield stress o at high
temperatures is a few hundred to thousand MPa. We con-
clude that magnetic friction is probably not too weak
compared with ordinary solid friction to be observable.

There is one caveat, however: The exchange interaction
is extremely short range, but in the simulation results
presented here no reduced value was inserted for the
interaction of spins on opposite sides of the slip plane.
The above estimate should therefore only be applied if the
surfaces are in close contact. As expected, simulations with
a reduced magnetic exchange interaction across the slip
plane lead to a smaller friction force.

Magnetic friction has characteristic features near the
critical temperature, which should be useful to separate
this contribution to solid friction from other ones. It is
nearly zero at low temperatures, where the ferromagnetic
ordering implies almost perfect translational invariance
along the surface. As thermal fluctuations destroy the
translational invariance, magnetic friction raises sharply
to a maximum slightly above the critical temperature
(Fig. 3). In the paramagnetic region the exact quasistatic
limit shows that the friction force has the same 1/T
asymptotics as JL times the nearest neighbor correlation
function, because the next nearest neighbor correlation
(<1/T?) becomes negligible.

What is the basic mechanism leading to magnetic fric-
tion in the Ising model? Obviously, shearing reduces the
correlation length locally by disturbing the equilibrium
correlations between spins on opposite sides of the slip
plane. Above T this corresponds to an effective tempera-
ture increase, which explains the energy flow into the
cooler heat bath. Since more neighbor pairs with antipar-
allel spin are present, the energy density is locally in-
creased in the steady state, compared with its value in
thermal equilibrium. As the correlation length vanishes
for T — oo, this picture explains why magnetic friction
vanishes in this limit.

Below T, the correlation length can be associated with
the diameter of thermally activated minority clusters of
spins pointing into the direction opposite to the spontane-
ous magnetization. The relative motion distorts minority
clusters, which extend across the slip plane, and possibly
cuts them into two pieces. Again this reduces the effective
correlation length. In thermal equilibrium a smaller corre-
lation length indicates a better ordered magnetic state.
Indeed we find an increased magnetization locally at the
slip plane (Fig. 4). This effect is less pronounced for the
Metropolis algorithm, where the spin configurations relax
more quickly into thermal equilibrium.
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FIG. 4. Magnetization profile along the z axis perpendicular to
the slip plane (at z = 40 in units of the lattice constant @) at T =
2.1 < T, for Glauber rates at different velocities. The local
magnetization near the slip plane is enhanced. This effect
becomes stronger for increasing velocity and saturates for the
same reason as in Fig. 2. When using Metropolis rates this effect
is less pronounced (not shown).

The local spin temperature in the vicinity of the slip
plane drops due to the influence of shearing. The driven
system acts like a “‘heat pump” cooling the spin degrees of
freedom below the temperature of the heat bath. The
shearing creates additional domain walls by deforming or
fragmenting minority clusters. The system continuously
tries to reduce these excess domain walls, thereby trans-
ferring domain wall energy to the heat bath. This is the
dissipation mechanism.

Why does this “heat pump” work better for higher
velocities, as shown by Fig. 4? Let us discuss first the
case of sufficiently high velocities, where the magnetiza-
tion near the slip plane saturates at a maximal value. Then
correlations between the two half-spaces can be neglected.
Instead, the spins in the lower half see an effective surface
field corresponding to the average surface magnetization of
the upper half. Hence minority spins near the slip plane flip
more easily into the majority direction than in the bulk. For
smaller velocities, however, minority clusters can be sta-
bilized more and more because of correlations across the
slip plane. Hence the surface magnetization decreases.

Analogous investigations for antiferromagnetic cou-
pling (J <0) were done, too. The dissipation rate turns
out to be much higher than in the ferromagnetic case (with
the same |J]). The friction maximum is more than 3 times
larger for the Ising antiferromagnet than for the ferromag-
net. The reason is that the local antiferromagnetic order
across the slip plane is destroyed whenever the upper
lattice is displaced by one lattice constant. This is a
stronger perturbation than in the ferromagnetic case, where
only the correlations of thermal disorder could be de-

stroyed by the relative motion. In particular, magnetic
friction does not vanish for 7 — 0 in the antiferromagnetic
case.

We acknowledge funding by the DFG through SFB 616
(““Energy dissipation at surfaces’) and support by Federal
Mogul Technology GmbH.

[1] T. Baumberger and C. Caroli, Adv. Phys. 55, 279 (2006).

[2] K.B. Jinesh and J. W.M. Frenken, Phys. Rev. Lett. 96,
166103 (2006).

[3] U. Landmann, W.D. Luedtke, and E.M. Ringer, Wear
153, 3 (1992).

[4] M.R. Sorensen, K. W. Jacobsen, and P. Stoltze, Phys.
Rev. B 53, 2101 (1996).

[5] J.E. Hammerberg, B.L. Holian, T.C. Germann, and
R. Ravelo, Metall. Mater. Trans. A 35, 2741 (2004).

[6] M. H. Miiser, M. Urbakh, and M. O. Robbins, Adv. Chem.
Phys. 126, 187 (2003).

[7] B.N.J. Persson, Sliding Friction (Springer, Berlin, 1998).

[8] O. Pfeiffer, R. Bennewitz, A. Baratoff, E. Meyer, and
P. Griitter, Phys. Rev. B 65, 161403(R) (2002).

[9] T. Kunstmann, A. Schlarb, M. Fendrich, D. Paulowski,
T. Wagner, and R. Mdller, Appl. Phys. Lett. 88, 153112
(2000).

[10] L.N. Kantorovich, J. Phys. Condens. Matter 13, 945
(2001).

[11] T. Trevethan and L. Kantorovich, Nanotechnology 16, S79
(2005).

[12] J.B. Pendry, J. Phys. Condens. Matter 9, 10301 (1997).

[13] A.I. Volokitin and B.N.J. Persson, Phys. Rev. B 65,
115419 (2002).

[14] C. Fusco, D.E. Wolf, and U. Nowak, Phys. Rev. B 77,
174426 (2008).

[15] B. Hoffmann, R. Houbertz, and U. Hartmann, Appl. Phys.
66, S409 (1998).

[16] M. Acharyya and B. K. Chakrabarti, Phys. Rev. B 52, 6550
(1995).

[17] J. Ortin and J. Goicoechea, Phys. Rev. B 58, 5628 (1998).

[18] D.P. Landau and K. Binder, A Guide to Monte Carlo
Simulations in Statistical Physics (Cambridge University
Press, Cambridge, 2000) Chap. 4.2.1.

[19] M.B. Stearns, in Magnetic Properties of Metals, edited by
H.P.J. Wijn and Landolt-Bornstein, New Series,
Group III, Vol. 19, Pt. a (Springer, Berlin, 1986).

[20] B.M. McCoy and T.T. Wu, The Two-Dimensional Ising
Model  (Harvard  University Press, Cambridge,
Massachusetts, 1973).

[21] The equilibrium bulk correlation length ¢ is defined by the
exponential cutoff of the spin-spin correlation function,
(8:8) — (S ~ i — 72 exp(—li — jla/€) for large
[i—jl and T # T. [Ornstein-Zernike-form, [18],
Eq. (2.22)].

[22] F.P. Bowden and D. Tabor, Friction and Lubrication
(Methuen, London, 1967).

137205-4



