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In this Letter, I study the magnetic response of electron wave functions in a commensurate collinear

antiferromagnet. I show that, at a special set of momenta, hidden antiunitary symmetry protects Kramers

degeneracy of Bloch eigenstates against a magnetic field, pointing transversely to staggered magnetiza-

tion. Hence, a substantial momentum dependence of the transverse g-factor in the Zeeman term, turning

the latter into a spin-orbit coupling that may be present in materials from chromium to borocarbides,

cuprates, pnictides, as well as organic and heavy fermion conductors.
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Antiferromagnetism is a frequent occurrence in materi-
als with interesting electron properties: it is found in
elemental [1] and binary [2] solids, in numerous borocar-
bides [3], in doped insulators such as cuprates [4], in iron
pnictides [5], in various organic [6] and heavy fermion [7]
compounds. The physics of an antiferromagnetic state in
these materials has been a subject of much research.

In this Letter, I study the response of electron states in an
antiferromagnet to a weak magnetic field. I concentrate on
the simplest case: a commensurate collinear antiferromag-
net, shown schematically in Fig. 1, where the magnetiza-
tion density at any point is parallel or antiparallel to a
single fixed direction n of staggered magnetization, and
changes sign upon primitive translation of the underlying
lattice.

In a paramagnet, double degeneracy of single-electron
eigenstates is usually attributed to symmetry under time
reversal �—and, indeed, perturbations that break � (such
as ferromagnetism or magnetic field) tend to remove the
degeneracy. Yet, mere violation of � does not preclude
degeneracy: in a commensurate centrosymmetric Néel
antiferromagnet, as in a paramagnet, all Bloch eigenstates
enjoy Kramers degeneracy [8] in spite of time reversal
being broken in the former, but not in the latter.

In an antiferromagnet, staggered magnetization sets a
special direction n in electron spin space, making it aniso-
tropic. Magnetic field along n removes the degeneracy, as
it does in a paramagnet. By contrast, in a transverse field,
the symmetry remains high enough to protect Kramers
degeneracy at a special set of momenta. Generally, in d
spatial dimensions, full degeneracy manifold is ðd�
1Þ-dimensional; at its subset, degeneracy is dictated by
symmetry. This is in marked contrast with a paramagnet,
where arbitrary magnetic field lifts the degeneracy of all
Bloch eigenstates.

I show that, at a subset of the degeneracy manifold
above, it is a hidden antiunitary symmetry that protects
Kramers degeneracy of Bloch states in a transverse field.
The degeneracy gives rise to a peculiar spin-orbit coupling,

whose emergence and basic properties, along with the
degeneracy itself, are the main result of this work.
Kramers degeneracy of special Bloch states in a trans-

verse field means that the transverse component g? of the
electron g-tensor vanishes for such states. Not being iden-
tically equal to zero, g? must, therefore, carry substantial
momentum dependence, and the Zeeman coupling H ZSO

must take the form

H ZSO ¼ ��B½gkðHk � �Þ þ g?ðpÞðH? � �Þ�; (1)

whereHk ¼ ðH � nÞn andH? ¼ H�Hk are the longitu-

FIG. 1 (color online). Doubly commensurate collinear antifer-
romagnet on a simple rectangular lattice. In the absence of
magnetism, time reversal � and primitive translations Tx and
Ty, shown by dashed arrows, are symmetry operations. In the

antiferromagnetic state, neither of the three remains a symmetry,
but the products �Tx and �Ty, shown by solid arrows, do, as

illustrated by filled spin arrows. Small dashed rectangle at the
center is the Wigner-Seitz cell boundary in the paramagnetic
state, while the shaded hexagon is its antiferromagnetic counter-
part. Notice that neither of the point group operations inter-
changes the two sublattices; hence, any point symmetry of the
lattice, including inversion I , remains a symmetry of the anti-
ferromagnetic state.
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dinal and the transverse components of the magnetic field
with respect to unit vector n of staggered magnetization,
�B is the Bohr magneton, while gk and g?ðpÞ are the

longitudinal and the transverse components of the g-tensor.
This very momentum dependence of g?ðpÞ turns the

common Zeeman coupling into a Zeeman spin-orbit inter-
actionH ZSO (1), whose appearance and key properties are
at the focus of this work. Zeeman spin-orbit coupling may
manifest itself spectacularly in a number of ways, which
will be mentioned below and discussed in detail elsewhere.

Symmetry properties of wave functions in magnetic
crystals have been studied by Dimmock and Wheeler [9],
who pointed out, among other things, that magnetism not
only lifts degeneracies by obviously lowering the symme-
try, but also may introduce new ones. This may happen at
the magnetic Brillouin zone (MBZ) boundary, under the
necessary condition that the magnetic unit cell be larger
than the paramagnetic one [9].

For a Néel antiferromagnet on a square lattice, response
of electron states to magnetic field was studied in [10] by
symmetry analysis, and in [11] within a weak coupling
model. The present work revisits [10], extends it to an
arbitrary crystal symmetry and shows, that the picture is
more rich than envisaged by the authors. At the same time,
the present work extends [9] by allowing for external
magnetic field—to show how, at special momenta,
Kramers degeneracy may persist even in a transverse mag-
netic field.

Antiferromagnetic order couples to the electron spin �
via exchange term ð�r � �Þ, where �r is proportional to
the average magnetization density at point r. Nonzero �r

changes sign under time reversal �, and removes the sym-
metry under primitive translations Ta, thus reducing the
symmetry with respect to that of paramagnetic state. In a
doubly commensurate collinear antiferromagnet, �r

changes sign upon Ta: �rþa ¼ ��r, while T
2
a leaves �r

intact: �rþ2a ¼ �r. Even though neither � nor Ta remain
a symmetry, their product �Ta does (see Fig. 1). In a
system with inversion center, so does �TaI , where I is
inversion.

Combined antiunitary symmetry �TaI induces Kramers
degeneracy [8]: If jpi is a Bloch eigenstate at momentum
p, then �TaI jpi is degenerate with jpi. Since � and I both
invert the momentum, both jpi and �TaI jpi carry the same
momentum label p. At the same time, jpi and �TaI jpi are
orthogonal: recalling that ðTaIÞ2 ¼ ��2 ¼ 1, one finds
[8]

hpj�TaI jpi ¼ �hpj�TaI jpi: (2)

Thus, in spite of broken time reversal symmetry, in a
centrosymmetric commensurate Néel antiferromagnet, all
Bloch states retain Kramers degeneracy.

Generally, magnetic field H lifts this degeneracy.
However, in a purely transverse field, hidden antiunitary

symmetry may protect the degeneracy at a special set of
points in the Brillouin zone, as I show below.
In a commensurate collinear antiferromagnet in mag-

netic field H, electron Hamiltonian has the form

H ¼ H 0 þ ð�r � �Þ � ðH � �Þ; (3)

where ‘‘paramagnetic’’ part H 0 is invariant under inde-
pendent action of Ta and �, and g�B is set to unity. In the
absence of the field, all Bloch eigenstates of Hamiltonian
(3) enjoy Kramers degeneracy by virtue of Eqn. (2).
Consider symmetries of Hamiltonian (3), involving a

combination of an elementary translation Ta, time reversal
�, or a spin rotation Umð�Þ around axism by angle�. The
relative orientation of �r, Hk, and H? is shown in Fig. 2.

Transverse field H? breaks the symmetries Unð�Þ and
Ta� (both change H?), but preserves Unð�Þ�Ta, their
combination at � ¼ �. Acting on the exact Bloch state
jpi at momentum p, this combined antiunitary operator
creates a degenerate partner eigenstate Unð�Þ�Tajpi,
which is orthogonal to jpi everywhere in the Brillouin
zone, unless p belongs to a paramagnetic Brillouin zone
boundary:

hpjUnð�Þ�Tajpi ¼ e�2ip�ahpjUnð�Þ�Tajpi: (4)

Equation (4) can be derived analogously to Eqn. (2) as soon
as one observes that ½Unð�Þ�Ta�2 ¼ T2

a.
Notice, however, that eigenstate Unð�Þ�Tajpi carries

momentum label �p rather than p. Generally, these two
momenta are different. However, an important exception

h

n

l = n   hx

∆       = − ∆r+a r

r∆   , H

H

FIG. 2 (color online). Relative orientation of �r, �rþa, Hk,
and H?. Notice that � flips both �r and H, while Ta leaves H
intact, but inverts �r.
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takes place at the magnetic Brillouin zone boundary, if
there is a unitary symmetry U, transforming �p into a
momentum, equivalent to p modulo reciprocal lattice vec-
tor Q of the antiferromagnetic state [9]:

�Up ¼ pþQ: (5)

In this case, eigenstateUUnð�Þ�Tajpi carries momentum
label pþQ � p, is degenerate with jpi and orthogonal to
it, thus explicitly demonstrating Kramers degeneracy at
momentum p in a transverse field. In the simplest case,
as in Fig. 3 below, U is the unity operator.

Additional insight into the locus of states, whose degen-
eracy persists in a transverse magnetic field, is afforded by
weak-coupling Hamiltonian of a single electron in a dou-
bly commensurate collinear antiferromagnet. Let Q be the
antiferromagnetic ordering wave vector (see the examples
below); �r creates a matrix element ð� � �Þ between the
Bloch states at momenta p and pþQ; for simplicity, I
neglect its possible dependence on p. In magnetic field H,
and at weak coupling, Hamiltonian (3) takes the form [11]

H ¼
�
�p � ðH � �Þ ð� � �Þ

ð� � �Þ �pþQ � ðH � �Þ
�
; (6)

where �p and �pþQ are single-particle energies of H 0 in

(3) at momenta p and pþQ.
In a purely transverse field H?, the spectrum of this

Hamiltonian is simply

E p ¼ �p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ½�p � ðH? � �Þ�2

q
; (7)

where �p � �pþ�pþQ

2 , and �p � �p��pþQ

2 . Equation (7) illus-

trates several points. First, at half-filling, a gap of size 2�
opens at the chemical potential. Second, in the absence of
magnetic field, each eigenstate is indeed doubly degener-
ate, in agreement with the arguments, encapsulated in
Eqn. (2). Finally, Eqn. (7) shows that the degeneracy
persists in a transverse field [and, therefore, g?ðpÞ in
Eqn. (1) vanishes] whenever �p ¼ 0. Barring a special

situation, this equation defines a surface in three dimen-

sions, a line in two, and a set of points in one. Furthermore,
as shown above, this manifold must contain all points,
satisfying Eqn. (5).
Notice that transverse magnetic field not only introduces

the last term in Hamiltonian (3), but also tilts the sublatti-
ces. However, the resulting magnetization has the same
symmetry as the field, and thus does not remove the
degeneracy.
Consider examples. In one dimension, magnetic

Brillouin zone boundary reduces to two points p ¼ � �
2a ,

which in fact coincide modulo antiferromagnetic wave
vector Q ¼ �

a , that is also the reciprocal lattice vector of

the antiferromagnetic state (see Fig. 3). In terms of the
general condition (5), this is the simplest case: U ¼ 1.
As a result, at p ¼ � �

2a , the two exact Bloch states in a

transverse field, jpi and �TaUnð�Þjpi, correspond to the
same momentum p, and are degenerate by virtue of
�TaUnð�Þ being a symmetry. Equation (4) guarantees their
orthogonality, thus protecting Kramers degeneracy at mo-
mentum p ¼ � �

2a against transverse magnetic field.

Now, consider a two-dimensional antiferromagnet of
simple rectangular symmetry, with the ordering wave vec-
tor Q ¼ ð�;�Þ, as shown in Fig. 1. In a transverse mag-
netic field, degeneracy persists at a line in the Brillouin
zone, by virtue of Eqn. (7). I will show that, in the rectan-
gular case, the degeneracy line must contain point � at the
center of the MBZ boundary [see Fig. 4(a)]. Consider a
Bloch state jpi at momentum p in a transverse field. As

FIG. 3 (color online). The paramagnetic (p ¼ � �
a ), and the

antiferromagnetic (p ¼ � �
2a ) Brillouin zone boundaries of a

one-dimensional Néel antiferromagnet. In the antiferromagnetic
state, the two points p ¼ � �

2a are identical modulo the anti-

ferromagnetic reciprocal lattice vector Q ¼ �
a . At these two

points, antiunitary symmetry Unð�ÞTa� protects Kramers de-
generacy against transverse magnetic field.
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FIG. 4 (color online). Geometry of the problem. (a) The
Brillouin zone for a simple rectangular lattice (the rectangle)
and its antiferromagnetic counterpart (MBZ, shaded hexagon).
Thick curve (red online), passing through point �, shows a
typical degeneracy line g?ðpÞ ¼ 0. At the MBZ boundary,
only momentum p at point � is equivalent to �p modulo the
reciprocal lattice vector of the antiferromagnetic state. For a
generic p0, shown by the dashed arrow, this is no longer true.
(b) The Brillouin zone of a simple square lattice and its anti-
ferromagnetic counterpart (shaded diagonal square). The degen-
eracy line must contain the entire MBZ boundary, shown in red
online.
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discussed above, eigenstate �TaUnð�Þjpi at momentum
�p is degenerate with jpi and, according to Eqn. (4),
must be orthogonal to it unless ðp � aÞ is an integer multiple
of �. At points � (i.e., the star of p ¼ Q=2), X, and Y,
momenta p and �p coincide modulo a reciprocal lattice
vector of the antiferromagnetic state. However, at points X
and Y [as well as at the entire vertical segment of the MBZ
boundary in Fig. 4(a)], ðp � aÞ is an integer multiple of �;
hence, jpi and �TaUnð�Þjpi are not obliged to be orthogo-
nal there as per Eqn. (4). Thus, � is the only point at the
MBZ boundary, where the two degenerate states jpi and
�TaUnð�Þjpi are orthogonal and correspond to the same
momentum. Dashed arrows in Fig. 4(a) show that, for a
generic point p0 at the MBZ boundary, no symmetry op-
eration relates�p0 to a vector, equivalent to p0. Hence, it is
only at point �, that the symmetry protects Kramers de-
generacy against transverse magnetic field. As in the one-
dimensional example above, in terms of Eqn. (5) this
corresponds to the simplest case of U ¼ 1.

Promotion from rectangular to square symmetry brings
along invariance under reflections �1;2 in either of the two

diagonal axes 1 and 2, passing through point � in Fig. 4(b).
As a result, eigenstate �1�TaUnð�Þjpi at momentum �2p
[Fig. 4(b)] is also degenerate with jpi and orthogonal to it,
as one can show analogously to the examples above. In
terms of general condition (5), this means U ¼ �1;2.

For momentum p at the MBZ boundary in Fig. 4(b), p
and �2p differ by a reciprocal lattice vector and thus
coincide. Hence, for a square-symmetry lattice in a trans-
verse field, Kramers degeneracy is protected by symmetry
at the entire MBZ boundary, as shown in Fig. 4(b).

Degeneracy of special Bloch states in a transverse field
hinges only on the symmetry of the antiferromagnetic
state, and thus holds equally in a strongly correlated or a
weakly coupled material—provided long-range antiferro-
magnetic order and well-defined electron quasiparticles.
Under these conditions, quantum fluctuations of the anti-
ferromagnetic order primarily renormalize the sublattice
magnetization, but leave intact the degeneracy of special
electron states in a transverse field—certainly in the lead-
ing order in fluctuations.

Now, g?ðpÞ can be expanded in a vicinity of the degen-
eracy line g?ðpÞ ¼ 0. With the exception of higher-
symmetry points, such as point X in Fig. 4(b), the leading
term of the expansion is linear in momentum deviation 	p
from the degeneracy line:

g?ðpÞ �
�p � 	p

@
; (8)

where �p=@ is momentum gradient of g?ðpÞ at point p on

the degeneracy line. Inversion symmetry requires, that �p

be a pseudovector and change sign upon inversion, and

Eqn. (7) shows that �p is of the order of the antiferromag-

netic coherence length 
� @vF

� .

Zeeman spin-orbit coupling (1) induces a number of
interesting effects. For instance, substantial momentum
dependence of g?ðpÞ means that the Electron Spin
Resonance (ESR) frequency of a carrier in a vicinity of
the degeneracy line varies along the quasiclassical trajec-
tory. In a weakly doped antiferromagnetic insulator, this
means inherent broadening of the ESR line with doping
and, eventually, loss of the ESR signal. In fact, this may
well be the reason behind the long-known ‘‘ESR silence’’
[12] of the cuprates. Suppression of transverse Pauli sus-
ceptibility is another simple consequence of vanishing
g?ðpÞ.
Finally, momentum dependence of g?ðpÞ allows excita-

tion of spin flip transitions by ac electric rather than
magnetic field [13]—a vivid effect of great promise for
controlled spin manipulation, so much sought after in spin
electronics. Its absorption matrix elements are defined by
�p � 
 of Eqn. (8), and exceed those of ESR at least by 2

orders of magnitude. According to Eqn. (8), resonance
absorption in this phenomenon shows a nontrivial depen-
dence on the orientation of the ac electric field with respect
to the crystal axes, and on the orientation of the dc mag-
netic field with respect to staggered magnetization.
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