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In linear transport, the fluctuation-dissipation theorem relates equilibrium current correlations to the

linear conductance coefficient. For nonlinear transport, there exist fluctuation relations that rely on

Onsager’s principle of microscopic reversibility away from equilibrium. However, both theory and

experiments have shown deviations from microreversibility in the form of magnetic field asymmetric

current-voltage relations. We present novel fluctuation relations for nonlinear transport in the presence of

magnetic fields that relate current correlation functions at any order at equilibrium to response coefficients

of current cumulants of lower order. We illustrate our results with the example of an electrical Mach-

Zehnder interferometer.
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Introduction.—Onsager derived the symmetry of trans-
port coefficients of irreversible processes using the princi-
ple of microscopic reversibility for the fluctuations of the
equilibrium system [1,2]. Thus the symmetry of transport
coefficients in the linear transport regime is directly related
to the fluctuation-dissipation theorem of Einstein, Johnson,
Nyquist, and Kubo [3–6]. Naturally, the question arises
whether there are fluctuation relations beyond the linear
response regime. In statistical mechanics, fluctuation rela-
tions were derived [7,8] as an extension of Onsager’s
relation to systems far from equilibrium. These fluctuation
relations make statements on the distribution function of
observables conjugate to thermodynamic forces for a wide
variety of nonequilibrium systems [9,10]. In electrical
transport the variable of interest is the transferred charge.
The theory is known as full counting statistics [11,12],
and fluctuation relations for conductors have been dis-
cussed in the absence [12–15] and the presence of a
magnetic field [16].

At equilibrium, in the presence of a magnetic field,
Onsager reciprocity still holds. However, away from equi-
librium, the potential landscape inside the conductor is
neither an odd nor an even function of magnetic field. As
a consequence, electrical conductors exhibit manifest de-
viations from symmetries based on microreversibility and
fluctuation relations derived from this principle [16] are not
valid. Surprisingly, and this is a central point of our work,
we obtain novel fluctuation relations even without invoking
the principle of microreversibility. Importantly, the novel
fluctuation relations are general and independent of a
specific model for interactions.

Full counting statistics and fluctuation theorem.—The
full counting statistics of a conductor with M terminals is
the probability distribution PðQÞ that Q¼ðQ1;Q2; . . . ;QMÞ
charges are transmitted into the reservoirs during the
measurement time t. The distribution function PðQÞ is
expressed by the generating function Fði�Þ ¼
ln
P

QPðQÞei�Q, where � ¼ ð�1; �2; . . . ; �MÞ are called

counting fields. In the long time limit, all irreducible

current cumulants at zero frequency are obtained by con-
secutive derivatives of the generating function, in contact�
this is hð�I�Þki ¼ ð�ieÞk½@kF=@�k

���¼0=t. The magnetic
field B perpendicular to the conductor and the affinities

A ¼ ðeV1

kBT
; eV2

kBT
; . . . ; eVM

kBT
Þ are externally controlled. Here eV�

is the potential at terminal � and T the temperature,
assumed to be equal and nonzero in all terminals.
The fluctuation relation for the full counting statistics

gives a simple relation for the probability that Q or—at
reversed magnetic field—�Q charges are transmitted.
Derivations [12–16] rely fundamentally on microscopic
reversibility: a process from terminal � to � has the
same probability as the reversed process, from terminal
� to � at inversed magnetic field. References [12–16]
assume that this is valid also far from equilibrium and find

PðQ; BÞ ¼ eAQPð�Q;�BÞ; (1)

F�ði�;AÞ ¼ �F�ð�i��A;AÞ: (2)

Equation (2) is the Fourier transform of Eq. (1) and deter-
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FIG. 1 (color online). Mach-Zehnder interferometer at filling
factor 2. Only the outer edge state enters the interferometer.
Coulomb interactions between neighboring edges—as indicated
by shading—lead to internal potentials Ui and Uo in the inner
and outer edge. For reversed magnetic field, all arrows point in
the opposite direction.
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mines the symmetry of the generating function. For con-
venience, the (anti)symmetrized generating function
F�ði�Þ ¼ Fði�; BÞ � Fði�;�BÞ is used, and the notation
F�ði�;AÞ emphasizes that the generating function de-
pends explicitly on the affinities A.

Mach-Zehnder interferometer (MZI).—As an instructive
example, we present a MZI (see Fig. 1) and show how
interaction (screening) effects lead to deviations from re-
versibility. It is a four-terminal conductor with two quan-
tum point contacts acting as beam splitters as shown in
Fig. 1. The two interferometer arms enclose a magnetic
flux �, such that interference arises due to the Aharonov-
Bohm effect. In experiments [17–20], the MZI is realized
using edge states in the quantum Hall regime, and it is
often operated at filling factor 2. Only carriers in the outer
edge enter the interferometer and are able to interfere.
Here, the inner edge state moves in vicinity in both inter-
ferometer arms and carries current from terminal 1 to 3 and
from 2 to 4 [20]. Although a four-terminal conductor, the
MZI is characterized by only a single transmission proba-
bility T31, due to the separation of left and right movers.
T31 is the probability for a particle to be transmitted in the
outer edge state from terminal 1 to 3. In the linear transport
regime, reciprocity means that [21] T31ðþBÞ ¼ T13ð�BÞ.
We next demonstrate that already Hartree interactions lead
to a violation of Eqs. (1) and (2).

Breakdown.—Interactions can lead to magnetic field
asymmetry in nonlinear transport, as was shown theoreti-
cally [22–24] as well as experimentally [25–29]: Every
particle is moving in a local potentialUð~rÞ generated by all
the other particles. The internal potential has to be deter-
mined self-consistently and depends on all potentials V�

applied in the external contacts, Uð ~rÞ ¼ Uð~r; fV�gÞ. The
scattering matrix depends on the energy of the particle and
is a functional of the internal potential, S ¼ SðE;Uð ~rÞÞ.
Indeed the functional dependence of the scattering matrix
is required by gauge invariance: The generating function
has to be invariant under a shift of all potentials by the
same amount, V� ! V� þU0. This condition can be ex-

pressed as dF
dU0

¼ 0. For long times and neglecting inter-

actions, the generating function in the scattering approach
is [11]

Fði�Þ ¼ t

h

Z
dE tr½lnð1� ~fKÞ�: (3)

Here, K ¼ ð1� ~�ySy ~�SÞ is composed of the scattering

matrix S, the unit matrix 1, and the matrix ~� introducing

the counting fields, ~� ¼ diagðe�i�1 ; e�i�2 ; . . . ; e�i�M Þ. The
diagonal matrix ~f contains the Fermi functions of the

different terminals with ~f ¼ diagðf1; f2; . . . ; fMÞ. With
this we can show that gauge invariance requires

X
�

@K

@V�

þ e
@K

@E
¼ 0: (4)

Here we used that the derivative of the Fermi functions
with respect toU0 can be expressed as an energy derivative

and that @K=@U0 ¼
P

�@K=@V�. Therefore, the scattering

matrix depends also via the internal potential landscape on
the external voltages, S¼SðE;fV�gÞ. As mentioned above,

the local internal potential has to be determined self-
consistently and it is not necessarily an even function of
magnetic field [22]. As a consequence, for nonlinear trans-
port, the scattering matrix is not reversible, S��ðB;fV�gÞ�
S��ð�B;fV�gÞ. This implies immediately the breakdown

of the fluctuation theorem (1) and (2) for nonlinear trans-
port, since any derivation is based upon reciprocity.
The lack of reversibility can be shown explicitly for the

MZI. Coulomb interactions between the two edge states
moving through the interferometer lead to internal poten-
tials Uo;Ui in the outer and inner edge. In this respect the
inner edge acts as a gate on the outer edge. For the
interference, this gives rise to an additional phase differ-
ence ’ðBÞ ¼ e�Uo�=h between the two interferometer
arms. Here, � is the time an electron needs to traverse the
interferometer, and �Uo is the difference of the internal
potential in the outer edge between the two arms.
It is easy to see that the internal screening potentialUo is

not an even function of magnetic field: For positive mag-
netic field as shown in Fig. 1, only processes from left to
right contribute, and the potential will depend on the
reflection RA ¼ 1� TA of the left beam splitter and on
the voltages V1 and V2. For inversed magnetic field, pro-
cesses from right to left are important, which depend on
RB ¼ 1� TB and voltages V3 and V4. To be explicit, we
determine the potential self-consistently within a Hartree
approximation [22,24,30]. The average charges qo and qi
in the edges of the upper interferometer arm are, on the one
hand, expressed as the difference between injected and
screened charge, and are, on the other hand, determined
by Coulomb interaction. For positive magnetic field, this
determines Uo and Ui in the upper arm through

qi ¼ e2DðV1 �UiÞ ¼ CðUi �UoÞ; (5)

qo ¼ e2DðRAV1 þ TAV2 �UoÞ ¼ CðUo �UiÞ: (6)

Here, C is the geometric capacitance between the two
edges, and D is the density of states of an edge state.
Similar equations hold for the lower interferometer arm
and for reversed magnetic field. To first order in ex-
ternal voltage, the potential difference �Uo ¼ P

�u�V�

is determined by the characteristic potentials u� ¼
½@�Uo=@V��eq. We find u3ðBÞ ¼ u1ð�BÞ ¼ 0, u1ðBÞ ¼
�u2ðBÞ ¼ RA � e2DTA=ð2Cþ e2DÞ, and u3ð�BÞ ¼
�u4ð�BÞ ¼ RB � e2DTB=ð2Cþ e2DÞ.
Using the characteristic potentials, the self-consistent

transmission probability T31 ¼ T31ðþB; V1 � V2Þ for a
particle in the interfering edge to transmit from terminal 1
to 3 for positive magnetic field is T31¼RARBþTATB�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RARBTATB

p
cosð��’Þ with ’ðþBÞ¼eu1ðþBÞ�

�ðV1�V2Þ=h.For T13¼T13ð�B;V3�V4Þ at negative mag-
netic field, the additional phase is ’ð�BÞ¼
eu3ð�BÞ�ðV3�V4Þ=h. The lack of reversibility out of
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equilibrium is evident:

T31ðþB;V1 � V2Þ � T13ð�B; V3 � V4Þ: (7)

This means that the fluctuation relation (2) is, strictly
speaking, valid only at equilibrium but has corrections
for finite voltages. In general, taking into account interac-
tions beyond the Hartree-level will not reestablish
reversibility.

Fluctuation relations for correlation functions.—
Including interactions, the fluctuation relation (2) for the
counting statistics is not valid anymore, as shown above
explicitly within a Hartree model. Nevertheless, we can
derive fluctuation relations for current correlation func-
tions. We emphasize that the following section is general,
no specific model for interactions is needed. It is useful to
expand the first few cumulants for eV � kBT,

I� ¼ X
�

Gð1Þ
�;�V� þX

��

Gð2Þ
�;��

V�V�

2
þOðV3Þ; (8)

S�� ¼ Sð0Þ�� þX
�

Sð1Þ��;�V� þOðV2Þ; (9)

C��� ¼ Cð0Þ
��� þOðVÞ: (10)

Up to second order in voltage, the mean current I� in
terminal � is determined by the linear and nonlinear con-

ductance coefficients,Gð1Þ
�;� andGð2Þ

�;��. The zero-frequency

current correlations S�� ¼ h�I��I�i contain equilibrium

Nyquist noise Sð0Þ�� and the noise susceptibility [31] Sð1Þ��;�

which includes the emergent shot noise. Of the third cu-
mulant C��� ¼ h�I��I��I�i, only the equilibrium value

Cð0Þ
��� is used in the following. All response coefficients are

obtained from the generating function, e.g., Gð2Þ
�;�� ¼

�ie½@3F=@��@V�@V��0=t, where the index 0 means set-

ting � and A to zero.
(Anti)symmetrizing the above definitions, both the

fluctuation-dissipation theorem (for þ) and the Onsager-
Casimir relations (for �) can be formulated concisely as

Sð0Þ��� ¼ kBTðGð1Þ
�;�� þGð1Þ

�;��Þ ¼ �Sð0Þ���: (11)

The next order fluctuation relation connects the third cu-
mulant at equilibrium which is odd in magnetic field with
combinations of the noise susceptibility and nonlinear
conductance coefficients,

Cð0Þ
���;� ¼ kBT½Sð1Þ��;�� þ Sð1Þ��;�� þ Sð1Þ��;��

� kBTðGð2Þ
�;��� þGð2Þ

�;��� þGð2Þ
�;���Þ�

¼ �Cð0Þ
���;�: (12)

These universal fluctuation relations can be extended to
any order: A current correlation function at equilibrium is
expressed by combinations of successive response coeffi-
cients of lower order current cumulants. They are graphi-
cally represented in Fig. 2. The first two lines of the figure

correspond to Eqs. (11) and (12), higher order relations can
easily be constructed.
The derivation of the fluctuation relations is based on the

following properties of the generating function:

F�ð�A;AÞ ¼ F�ð0;AÞ ¼ 0; (13)

F�ði�; 0Þ ¼ �F�ð�i�; 0Þ: (14)

The first equation defines a special symmetry point at
i� ¼ �A (for all A) for which the generating function
vanishes, just as for � ¼ 0 which originates from proba-
bility conservation. To demonstrate it for a system with
arbitrary electron-electron interactions, we start from

the definition of the generating function Fði�Þ ¼
lnhe�i�Q̂tei�Q̂0i0. Here, Q̂0 and Q̂t denote the charge
operators at time 0 and time t, and the expectation value
is taken with respect to the initial state, described by a
grand-canonical density matrix. At time 0 the conduc-
tor is decoupled from the reservoirs, and the initial

Hamiltonian Ĥ0 commutes with the charge Q̂0. To derive
Eq. (13), we use that the total energy in the system
‘‘conductorþ reservoirs’’ is conserved at all times. We
emphasize that the identity Eq. (13) is valid without micro-
reversibility. Special care should be taken of the case when
(i) the problem is time-dependent, (ii) the temperature is
not equal in all reservoirs, and (iii) a bath allows energy
exchange, e.g., via electron-phonon interactions. Then, we
would have to consider energy currents as well and intro-
duce additional counting fields that account for the trans-
ferred energy. In this case, a similar relation can be derived.
In terms of distribution functions, Eq. (13) defines a global
detailed balance relation,X

Q

PðQÞ ¼ X
Q

PðQÞe�AQ ¼ he�AQi ¼ 1; (15)

valid even if Eq. (1) is not true. The second equation,
Eq. (14), represents the fluctuation relation (2) at A ¼ 0
and is a consequence of microscopic reversibility at equi-

_+ _+ _+
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_+ _+ _+ _+

=0  (+){=0  (−)

=0  (−)

=0  (+){=0  (−)
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_+ _+
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= _ +
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FIG. 2 (color online). A graphical representation of the rela-
tions between response coefficients, generalizing Eq. (17) to
multiple terminals. The number of circles stands for the order
of the cumulant, and the number of vertical lines means the order
of the derivative with respect to voltage as well as the power of
the factor (kBT) with which the response coefficient has to be
multiplied. The different heavy lines (different colors) represent
derivatives with respect to quantities of different terminals. The
summations go over all possible permutations ðklÞ, with k the

number of circles and l the number of vertical lines. Higher order
correlations follow the same rules.
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librium. It follows that even (odd) cumulants at equilibrium
are even (odd) in magnetic field as expressed by

hð�I�Þkieq� ¼ �ð�1Þkhð�I�Þkieq� : (16)

Both functions F�ði�;AÞ and F�ð�i��A;AÞ can be
expanded as Taylor series around A ¼ 0 and � ¼ 0. This
defines general relations for specific Taylor coefficients,

@kF�ð�i��A;AÞ
@Ak

�

��������0
¼ Xk

l¼0

k
l

� �
il
@kF�ði�;AÞ
@Ak�l

� @�l
�

��������0
;

which vanish identically due to Eq. (13). The last term in
the sum represents the kth derivative of the generating
function with respect to the counting fields, which is the
kth cumulant at equilibrium. Solving the above equation
for this last term leads to

hð�I�Þkieq� ¼�Xk�1

l¼1

k
l

� �
ð�kBTÞk�l @

k�lhð�I�Þli
@Vk�l

�

��������
eq

�
: (17)

This equation relates a correlation function at equilibrium
to a linear combination of response coefficients of lower
order correlations. Together with Eq. (16)—which deter-
mines the magnetic field symmetry—it defines new fluc-
tuation relations for nonlinear transport. In Fig. 2, they are
schematically represented and extended to the general case
of a multiterminal conductor.

For the MZI, the fluctuation relation Eq. (12) can be
explicitly verified within Hartree. We are concerned with
temperatures and voltages low compared to the first plasma
mode of an interferometer arm. Because of the separation
of left and right movers, several response coefficients

vanish, in particular, the nonlinear conductance Gð2Þ
3;31� as

well as the noise susceptibility Sð1Þ33;1�. Also the third cu-

mulant at equilibrium Cð0Þ
331� is zero, because the scattering

matrix is energy-independent for equal length of the inter-

ferometer arms. But the coefficients Gð2Þ
1;33 and Sð1Þ31;3 are

finite for�B due to the internal potential, and vanish for B.
Similar arguments hold for response coefficients with 1 $
3. Using dg=dU � ð4e3�=h2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RBTBRATA

p
sin�, Eq. (12)

simplifies for the MZI to

2Sð1Þ31;3� ¼ kBTG
ð2Þ
1;33� ¼ �kBTu3ð�BÞdg=dU; (18)

2Sð1Þ31;1� ¼ kBTG
ð2Þ
3;11� ¼ kBTu1ðBÞdg=dU: (19)

The fluctuation relation (2), which does not account for
magnetic field asymmetry in screening effects, would re-
quire that the antisymmetrized part (�) of the above
equations is identically zero [16]. Measuring a nonlinear

conductance coefficient Gð2Þ
1;33 or noise susceptibility Sð1Þ31;3,

which is asymmetric in magnetic field, proves Eq. (2)
wrong. The fluctuation relations Eqs. (18) and (19) are
linear in temperature, periodic with the magnetic flux �,
and depend on the reflection of the beam splitters; they can
be experimentally verified.

Conclusion.—We have shown that electron-electron in-
teractions lead to a breakdown of the usual fluctuation
relations for the full counting statistics in the presence of
a magnetic field. The reason is that interactions can induce
effective deviations from reversibility of scattering pro-
cesses out of equilibrium. Instead, fluctuation relations
can be derived which relate correlation functions at equi-
librium to response coefficients of correlations of lower
order. These fluctuation relations are valid even in the
presence of magnetic field asymmetry.
We thank D. Sanchez and M. Polianski for instructive

discussions. This work is supported by MaNEP and the
Swiss NSF.

[1] L. Onsager, Phys. Rev. 37, 405 (1931).
[2] H. B. G. Casimir, Rev. Mod. Phys. 17, 343 (1945).
[3] A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905).
[4] J. B. Johnson, Phys. Rev. 32, 97 (1928).
[5] H. Nyquist, Phys. Rev. 32, 110 (1928).
[6] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[7] D. J. Evans, E. G.D. Cohen, and G. P. Morriss, Phys. Rev.

Lett. 71, 2401 (1993).
[8] G. Gallavotti and E.G. D. Cohen, Phys. Rev. Lett. 74,

2694 (1995).
[9] T. Taniguchi and E.G.D. Cohen, J. Stat. Phys. 130, 633

(2008).
[10] L. Rondoni and C. Mejı́a-Monasterio, Nonlinearity 20, R1

(2007).
[11] L. S. Levitov and G. Lesovik, JETP Lett. 58, 230 (1993).
[12] J. Tobiska and Yu.V. Nazarov, Phys. Rev. B 72, 235328

(2005); see especially Sec. V.
[13] D. Andrieux and P. Gaspard, J. Stat. Mech. (2006)

P01011; (2007) P02006.
[14] M. Esposito, U. Harbola, and S. Mukamel, Phys. Rev. B

75, 155316 (2007).
[15] R. D. Astumian, Phys. Rev. Lett. 101, 046802 (2008).
[16] K. Saito and Y. Utsumi, arXiv:0709.4128 [Phys. Rev. B (to

be published)].
[17] Y. Ji et al., Nature (London) 422, 415 (2003).
[18] L. V. Litvin, H.-P. Tranitz, W. Wegscheider, and C. Strunk,

Phys. Rev. B 75, 033315 (2007).
[19] P. Roulleau et al., Phys. Rev. Lett. 100, 126802 (2008).
[20] E. Bieri, Ph.D. thesis, University of Basel, 2007.
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[24] M. L. Polianski and M. Büttiker, Phys. Rev. Lett. 96,
156804 (2006).
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