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We investigate charge transport within some background medium by means of an effective lattice

model with a novel form of fermion-boson coupling. The bosons describe fluctuations of a correlated

background. By analyzing ground state and spectral properties of this transport model, we show how a

metal-insulator quantum phase transition can occur for the half-filled band case. We discuss the evolution

of a mass-asymmetric band structure in the insulating phase and establish connections to the Mott and

Peierls transition scenarios.
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The way a material evolves from a metallic to an insu-
lating state is one of the most fundamental problems in
solid state physics. Besides band structure and disorder
effects, electron-electron and electron-phonon interactions
are the driving forces behind metal-insulator transitions
(MITs) in the majority of cases. While the so-called
Mott-Hubbard MIT [1] is caused by strong Coulomb cor-
relations, the Peierls MIT [2] is triggered by the coupling to
vibrational excitations of the crystal. Both scenarios are
known to compete in subtle ways.

The MIT problem can be addressed by the investigation
of generic Hamiltonians for interacting electrons and pho-
nons like the Holstein [3,4], Hubbard [1] and (quarter-
filled) t-J models [5], or combinations of these [6]. These
models have been proved to describe MIT phenomena for
the half-filled band case, in particular, for one-dimensional
(1D) systems known to be susceptible to the formation of
insulating spin-density-wave (SDW) or charge-density-
wave (CDW) broken-symmetry ground states [7]. On the
metallic side of the MIT, charge transport then takes place
within a ‘‘background medium’’ that exhibits strong corre-
lations, which anticipate the SDW or CDW on the insulat-
ing side. In that case, a particle, as it moves, creates local
distortions of substantial energy in the background. These
distortions may be parametrized as bosons. They are able
to relax, with a rate that depends on the system properties
but also on the proximity to the MIT.

In order to model such a situation the authors recently
proposed a simplified transport Hamiltonian [8,9]

H ¼ Hb � �
X
i

ðbyi þ biÞ þ!0

X
i

byi bi; (1)

where Hb ¼ �tb
P

hi;jic
y
j ciðbyi þ bjÞ describes the boson-

affected nearest-neighbor (NN) hopping of fermionic par-

ticles (cyi ) [10]. In (1) the particle creates a boson (byi ) on
the site it leaves and destroys a boson on the site it enters.
Thereby it generates a ‘‘string’’ of local bosonic fluctua-
tions with energy !0 [11]. Cutting the string, the � term

allows a boson to decay spontaneously. A unitary trans-
formation bi � bi þ �=!0 eliminates the boson relaxa-
tion term in favor of a free-particle hopping channel,

Hf ¼ �tf
P

hi;jic
y
j ci with tf ¼ 2�tb=!0, in addition to

the original one. As a result

H � H ¼ Hb þHf þ!0

X
i

byi bi; (2)

and the physics of our model is governed by two parameter
ratios: the relative strengths of the two transport channels
(tf=tb) and the rate of bosonic fluctuations ð!0=tbÞ�1. The

model has been solved numerically in the one-particle
sector and revealed—despite its seeming simplicity—a
surprisingly rich ‘‘phase diagram’’ with regimes of quasi-
free, correlation and fluctuation dominated transport [9]. In
this case the spinless Hamiltonian (2) covers basic features
of the more complicated t-J, Hubbard or Holstein models
in the low doping or density regimes, but is much easier to
evaluate.
Whether our two-channel transport model likewise de-

scribes a quantum phase transition from a metallic to an
insulating phase at certain commensurate band fillings
remained an important but open question. The free hopping
channelHf will clearly act against any correlation-induced

charge ordering that might open a gap at the Fermi energy
EF. Strong bosonic fluctuations, i.e., small !0, will also
tend to destroy CDW order. On the other hand, a tendency
towards CDW formation at half-filling is expected for large
!0=tb by perturbative arguments, yielding an effective
Hamiltonian with nearest-neighbor fermion repulsion. In
some respects this is evocative of the quantum phase
transition in the spinless fermion Holstein model, which
for large phonon frequencies and strong couplings can be
mapped on the XXZmodel [4]. The XXZmodel undergoes
a Kosterlitz-Thouless transition at the spin isotropy point.
Further evidence of a quantum phase transition comes

from the investigation of simplified versions of (1): (i) a
coarse-grained model with only one bosonic oscillator for
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the 1D infinite system, and (ii) a 1D model based on a
2-site cluster. The exact solution of (i) and an approximate
solution of (ii) both exhibit quantum phase transitions at
� ¼ 0 between two Fermi liquids, with different Fermi
surfaces, non-Fermi-liquid behavior persisting down to
zero temperature at the critical point in case (ii) [8].

The MIT is a subtle quantum mechanical problem,
however, that requires nonapproximative investigation
schemes. Therefore, in this work, we apply unbiased nu-
merical techniques to study the competition between itin-
erancy, correlations and fluctuations for the 1D half-filled
band case, using the full model (1) without any restrictions.
To this end we employ exact diagonalization in combina-
tion with kernel polynomial expansion methods, adapted
for coupled fermion-boson systems [12]. The computa-
tional requirements are determined by the Hilbert space
dimensionDH ¼ ðN þ NbÞ!=½ðN � NeÞ!Ne!Nb!�, whereN
is the number of lattice sites, Ne counts the fermions, and
Nb is the maximum number of bosons retained. Typically
we deal with DH of about 1011.

Let us start with the discussion of the photoemission
(PE) spectra. The spectral density of single-particle exci-
tations associated with the injection of an electron with
wave vector k, Aþðk;!Þ (inverse PE), and the correspond-
ing quantity for the emission of an electron, A�ðk;!Þ (PE),
are given by A�ðk;!Þ ¼ P

njhc�
n jc�k jc 0ij2�½!�!�

n �.
Here cþk ¼ cyk , c

�
k ¼ ck, and jc 0i is the ground state in

the Ne-particle sector while jc�
n i denote the nth excited

states in the Ne � 1-particle sectors with excitation ener-
gies !�

n ¼ E�
n � E0.

Figure 1 displays the wave vector resolved single-
particle spectra in the regime where distortions of the
background are energy intensive; i.e., the boson frequency
!0 is high. If the free transport channel is dominant
(tf ¼ 5—upper graph), the occupied (unoccupied) band

states, probed by PE (inverse PE), give rise to an almost
particle-hole symmetric absorption spectrum Aþ

K ð!�
EFÞ ’ A�

K��ðEF �!Þ. Thereby the main spectral weight
resides in the uppermost (lowest) peaks of A�

K (Aþ
K ) in each

K sector. The corresponding ‘‘coherent’’ band structure
roughly follows the �2tf cosK tight-binding band.

Satellites with less spectral weight occur near the
Brillouin zone boundary predominantly, as a result of
mixed electron-boson excitations with total wave vector
K. At T ¼ 0 the Fermi energy is obtained fromP

K

REF�1 AKð!Þd! ¼ Ne ¼ N=2 (half-filling, no spin).

We see that there is no gap between Aþ
��=2 and A�

��=2 at

EF. Moreover the spectral weight of both peaks is almost
one; i.e., a particle injected (removed) with K ¼ KF ¼
��=2 propagates unaffected by bosonic fluctuations.
The system behaves as an unusual metal.

If we decrease � (tf=tb ratio) at fixed !0, we enter the

regime where boson-assisted transport becomes important
(see lower graph of Fig. 1). At about �cð!0 ¼ 2Þ ’ 0:1 a
gap opens at K ¼ ��=2 in the PE spectra. The gap in-
creases as � < �c gets smaller, but its magnitude shows no

finite-size dependence (to demonstrate this we included the
N ¼ 16, Nb ¼ 9 data for K ¼ ��=2). Most notably EF

lies inside the gap region, signalizing the transition to the
insulating state. The MIT is correlation induced. Since � is
small, distortions of the background cannot relax easily.
Accordingly the band structure is strongly renormalized.
We observe that now A�

K ð!� EFÞ ’ A�
��Kð!� EFÞ and

expect a perfect doubling of the Brillouin zone for N ! 1.
Mapping our model (1) for !0 � tf, tb to a (XXZ-like)

spin model, Sz ! �Sz symmetry is broken, reflecting the
observed broken particle-hole symmetry: the highest oc-
cupied states belong to an extremely flat quasiparticle
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FIG. 1 (color online). Photoemission (black) and inverse pho-
toemission spectra (red) for the half-filled band case with !0 ¼
2 at tf ¼ 5 (upper panels) and tf ¼ 0:01 (lower panels), where

N ¼ 12, Nb ¼ 15. Dashed lines give the integrated spectral
weights, e.g., SþK ð!� EFÞ ¼

R
!
0 d!0Aþ

K ð!0 � EFÞ, where SK ¼
S�K ð�1Þ þ SþK ð1Þ ¼ 1, and

P
KSK ¼ N. Here and in what

follows periodic boundary conditions were used, leading to
discrete KðNÞ wave numbers. All energies are measured in units
of tb ¼ 1, and ! is rescaled with respect to EF.
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band, whereas the lowest unoccupied states are much more
dispersive [13].

The correlated band structure can be understood by
‘‘doping’’ a perfect CDW state (Fig. 2). To restore the
CDW order a doped hole can be transferred by a coherent
6-step process of order Oðt6b=!5

0Þ,

j� ��i ! j� ��i ! j� ��i !
���������

�
�

� �
�
�
! j� ��i ! j � ��i;

where in steps 1–3, three bosons (�) are excited, which are
consumed in steps 4–6 afterwards [9,14]. In this process
the fermion (�) becomes correlated with the background
fluctuations. We note that such a coherent hopping process,
in which the particle propagates and restores the back-
ground, exists even for the case � ¼ 0 where transport is
fully boson-assisted. In contrast an additional electron
can move by a two-step process of order Oðt2b=!0Þ.
Consequently, the electron band is much less renormalized
than the hole band, and the mass enhancement is by a
factorOððtb=!0Þ4Þ smaller. Note that the mass-asymmetric
band structure that evolves here is correlation induced.

That the observed MIT is indeed correlation induced is
corroborated by the weakening and finally closing of the
excitation gap if the boson energy !0 is reduced at fixed �
(see Fig. 3). In this way the ability of the background to
relax is enhanced, fluctuations overcome correlations and
the system turns back to a metallic state. At the same time
the spectral weight is transferred from the coherent to the
incoherent part of the (inverse) PE spectra, especially forK
away from KF ¼ �=2 where the line shape is affected by
rather broad bosonic signatures.

The CDW structure of the insulating state becomes ap-
parent by investigating the particle-particle and particle-
boson correlation function, �eeðjÞ ¼ 1

N2
e

P
ihniniþji and

�ebðjÞ ¼ 1
Ne

P
ihnibyiþjbiþji, respectively, where ni ¼ cyi ci.

In Fig. 4 the even-odd modulation of the charge density
away from a singled out site i of the first particle is clearly
visible. We note that the charge structure factor, Scð�Þ ¼
1
N2

P
i;jð�1Þjh0jðni � 1=2Þðnj � 1=2Þj0i, increases by a

factor of about two in going from � ¼ 0:1 (Sc ¼ 0:0561)
to � ¼ 0:01 (Sc ¼ 0:1056) at !0 ¼ 2 [15].

In the CDW, where, e.g., the even sites are occupied,
every hop of a fermion excites a boson at an even site. This
gives a large contribution to �ebðjÞ at even sites in addition
to NN sites jjj ¼ 1 (middle panel). Since the CDW in-
volves only few bosons (see lower panel), this is the

dominant contribution in first order of tb=!0, and explains
why the boson density is large at sites with large fermion
density, although the hopping term tb creates bosons at the
neighboring sites of a fermion.
The charge oscillations become rapidly suppressed by

increasing �, but there is still a reduced charge density at
the particle’s neighboring sites, which enhances the mo-
bility of the carrier. Accordingly the boson density is
enlarged (suppressed) at the NN sites (site) of the particle.
Clearly, �ebðjÞ is small 8jjj if !0 � tb, tf because of the

high energy cost. As expected, the fluctuation dominated

FIG. 2. Doping a perfect CDW, states with one particle re-
moved (left panel) are connected by a six-step hopping process
(see text), whereas a two-step process (right panel) relates states
with an additional particle.
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FIG. 3 (color online). (Inverse) Photoemission for !0 ¼ 0:5
and � ¼ 0:01, i.e., tfð�;!0Þ ¼ 0:04. Again N ¼ 12, but now

Nb ¼ 15.
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state of the half-filled 1D two-channel fermion-boson model (2).
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regime is characterized by a large number of boson quanta
in the ground state. The position of the maximum in the
boson weight function jcmj2 is shifted to slightly larger
values as � increases; i.e., the correlations weaken.

Further information on the ground state properties can
be obtained from the kinetic energy parts Ekin;f=b ¼
h0jHf=bj0i. By way of example, at !0 ¼ 2 (N ¼ 12, Nb ¼
15), we find Ekin;f ¼ �37:040 [�0:023] and Ekin;b ¼
�5:291 [�7:125] for � ¼ 5:0 [0.01], showing that
boson-assisted hopping becomes the major transport
mechanism at small �. On the metallic side of the MIT
the creation and annihilation of bosons opens a coherent
transport channel in the regime where strong correlations
persist in the background. The Drude weight D, obtained
from the f-sum rule �D ¼ 1

2 ðEkin;f þ Ekin;bÞ þR1
0 �regð!Þd!, serves as a measure for this coherent trans-

port. Here �regð!Þ ¼ P
n>0

jhnjjj0ij2
!n

�ð!�!nÞ is the regu-
lar part of the optical conductivity (with current
j ¼ jf þ jb). D is reduced with decreasing �; e.g., we

have D ¼ 20:29 [5.146] for � ¼ 5:0 [1.0] at !0 ¼ 2.
At the MIT point D vanishes for the infinite system. At

the same time the optical gap opens. In the insulating phase
the optical response is dominated by the multiboson emis-
sion and absorption processes. Thus the spectral weight
contained in the regular part of �ð!Þ is enhanced.

A small boson frequency allows for large fluctuations in
the background, i.e., many bosons in our model. This
supports transport via the 6-step process on the one hand
but, as in the one-particle sector [9], also limits the mobil-
ity of a particle by many scattering events. Nevertheless D
is expected to stay finite even for !0=tb ! 0.

To summarize, the two-channel transport Hamiltonian,
introduced for studying the dynamics of charge carriers in
a correlated/fluctuating medium, has previously only been
properly analyzed for a single carrier [9]. In this limit the
model may capture some of the physics of 2D high-Tc

superconducting cuprates [16] or 3D colossal magneto-
resistive manganites [17]. Here we focused on the metal-
insulator transition problem at finite particle density, in
particular, in one dimension at half-filling, which might
be of importance, e.g., for the 1D CDW MX chain com-
pounds [7]. Since in this case the problem is of the same
complexity as for the quarter-filled t-Jz-J? or spinless
fermion Holstein models, we make use of elaborate nu-
merical techniques in order to avoid uncontrolled approx-
imations. From our finite-cluster study we have strong
evidence that the model exhibits a quantum phase transi-
tion from a metallic to an insulating state. The MIT is
driven by correlations, like the Mott-Hubbard transition,
but in our case true long-range order develops because a
CDW state is formed. This might point towards a Peierls
transition scenario. The Peierls instability, however, is
most pronounced in the adiabatic limit of small phonon
frequencies, with many phonons involved in establishing
the CDW (lattice dimerization). By contrast, we find that

the CDW ground state is a few-boson state. Obviously, the
system is more susceptible to CDW-formation at large
boson frequency !0 (small transfer amplitude tf), keeping

the boson relaxation � ¼ tf!0=2tb fixed. This is the limit

of an effective fermionic system with (instantaneous)
Coulomb repulsion. Recall that as a consequence of the
correlation-induced CDW state, a band structure with a
very narrow valence and broad conduction band evolves,
different in nature from simple two-band models.
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