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Molecular-dynamics simulations are used to investigate temperature relaxation between electrons and

ions in a fully ionized, classical Coulomb plasma with minimal assumptions. Recombination is avoided

by using like charges. The relaxation rate agrees with theory in the weak coupling limit (g �
potential=kinetic energy � 1), whereas it saturates at g > 1 due to correlation effects. The ‘‘Coulomb

log’’ is found to be independent of the ion charge (at constant g) and mass ratio >25.
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Temperature relaxation between electrons and ions in a
thermonuclear plasma is one of many transport processes
that must be modeled accurately in order to predict inertial
confinement fusion (ICF) [1]. Historically, collisional rates
have been uncertain because the long-range Coulomb force
leads to logarithmic divergences [2,3]. Moreover, ICF
plasmas traverse many physics regimes characterized by
collective, quantum, and correlation effects [4,5]. This
uncertainty may be why codes that use the Landau-
Spitzer rate [2] consistently underestimate the peak ion
temperature in ICF experiments [6].

To illustrate the issues quantitatively, consider a weakly
coupled, classical plasma. The relaxation of the electron
temperature (Te) toward the ion temperature (Ti) is gov-
erned by

dTe

dt
¼ ��e�iðTe � TiÞ (1)

with a rate of the form

�e�i ¼ �o ln�: (2)

Most theories [2–5,7–12] obtain the same prefactor

�o ¼ 8

3
nie

4Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mM

p

ðmkBTi þMkBTeÞ3=2
; (3)

where mðMÞ, eðZeÞ, and ne (ni) are the mass, charge, and
density of the electrons (ions), and kB is Boltzman’s con-
stant. The difficulty arises in treating the long-range elec-
trical forces, which produces a ‘‘Coulomb log’’ of the form

ln� ¼ lnðC�D=RcÞ: (4)

The electron Debye length �D � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=4�nee

2
p

repre-
sents the largest impact parameter in a plasma because
fields are screened out at larger distances [2,7]. The
Landau length Rc � Ze2=kBTe represents the smallest
relevant impact parameter because it characterizes the
large angle scatterings. The coefficient C was found to be
�1–3, either by estimation [2,7] or various levels of ap-

proximation [8–10]. Some models [8,10] found C /
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z

p
because they used the Debye-Huckel screening

length �D=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z

p
. However, more systematic theories are

possible for a weakly coupled plasma where

g � Ze2

�DkBTe

¼ Rc

�D

(5)

is small because RC and �D are well separated. Kihara and
Aono [11] (KA) regularized the divergent integrals for
close and distant encounters by introducing a cutoff at
intermediate scales which cancels out in the end. Brown,
Preston, and Singleton [12] (BPS) removed the singular-
ities by using dimensional continuation to emphasize the
short- and long-range effects. KA and BPS both foundC ¼
0:765 independent of Z, as is reported in Ref. [13].
Since the variance in C can affect ln� during an ICF

implosion, there have been attempts to ‘‘measure’’ ln�
with experiments [14] and molecular-dynamics (MD)
simulations [15]. The experiments are conducted by irra-
diating a solid foil with short-pulse lasers and observing
the heat pulse on the backside. However, it is difficult to
infer �i�e accurately since Z and Te are only estimated and
there are significant quantum and correlation effects. MD
simulations can calculate �i�e directly with well-defined
plasma conditions and interparticle potentials. However, a
Coulomb potential with oppositely charged particles leads
to collapse (recombination). This can be avoided with
finite (semiclassical) potentials which are also used to
model quantum effects in limited regimes. However, such
MD simulations are no longer ab initio and may test only
the semiclassical hypothesis.
Here, we describe MD simulations of temperature re-

laxation for a purely classical plasma using the actual
Coulomb force. These are compared with theory without
assuming that semiclassical potentials mimic quantum
effects. The simulations employ enough particles to ensure
numerical convergence with a statistical uncertainty of
�5%. Recombination is avoided by using positively
charged electrons and ions. This does not affect �e�i since
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it depends on Z2 to leading order, but a neutralizing
background is needed. We find excellent agreement with
the KA and BPS theories in the weakly coupled regime
(g � 1) where they are valid. We also investigate the
moderately coupled regime (g� 1–20) where ICF implo-
sions begin.

To extract �e�i from the MD simulations, it is first
necessary to solve the relaxation equations with a time-
dependent �e�i since it can vary as T

��
e with 0<�< 1:5.

In particular, temperature relaxation is governed by Eq. (1)
for Te and

dTi

dt
¼ �i�eðTe � TiÞ � �i�e�T (6)

for the ions, where �i�e ¼ ðne=niÞ�e�i ¼ Z�o ln� due to
charge neutrality ne ¼ Zni. The dependence on Ti can be
removed by invoking energy conservation neTe þ niTi ¼
neTeo þ niTio for g � 1 since we can ignore the electro-
static energy. This yields

Ti ¼ Tio � ZðTe � TeoÞ; (7)

where Teo and Tio are the initial temperatures. The final
equilibration temperature

T1 ¼ ZTeo þ Tio

Zþ 1
(8)

is obtained by setting Te ¼ Ti ¼ T1 in Eq. (7). Then, by
normalizing time to the initial relaxation rate as � �
ðZþ 1Þ�e�iðTeoÞt and inserting Eqs. (7) and (8) into
Eq. (1), we obtain

dT

d�
¼ "� T

T� ; (9)

where T � Te=Teo and

" � T1
Teo

¼ Zþ Tio=Teo

ð1þ ZÞ : (10)

If �e�i is constant ð� ¼ 0Þ, Eq. (9) has the familiar solution

TeðtÞ ¼ T1 þ ðTeo � T1Þ exp½��e�iðZþ 1Þt�: (11)

However, for g � 1, ln� increases with Te such that
� ¼ 1. Then, the solution is given by

ðZþ 1Þ�e�iðTeoÞt ¼ 1� T þ " ln

�
"� 1

"� T

�
: (12)

The solution for � ¼ 1:5 and Z ¼ 1 is given by Eq. (8.45)
in Ref. [3]. To infer �e�iðTeoÞ, the MD simulations are fit to
these solutions by scaling the time axis.

The MD simulations are performed with the COULMD

code in which we solve the classical equations of motion
for a specified number of electrons (Ne) and ions (Ni)
interacting through the pure Coulomb force. The bounda-

ries are chosen to be periodic. For numerical efficiency, the
MD code is based on a parallel implementation of the
particle-particle-particle-mesh algorithm [16], which com-
bines high resolution for individual encounters with a
rapid, mesh-based, long-range force calculation. Time is

normalized to the electron plasma frequency !pe ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�nee

2=m
p

, and the integration time step is varied
!pedt < 0:01 in order to conserve energy to <10�4.

Each set of particles is initialized randomly in space and
with a Maxwellian velocity distribution at a specified
temperature. Each species is first allowed to equilibrate
only with itself for a time 0:2–1=�e�i during which the
energy fluctuations dissipate. The temperature is held fixed
by rescaling the particle velocities. Then, the relaxation
phase commences for �e�it� 1–3 by letting the whole
system evolve freely.
The simulation parameters are chosen to preserve the

physics of interest while mitigating the numerical issues.
For a purely classical plasma, the physics issues center on
g since Eqs. (2)–(4) reduce to

�e�i

!pe
¼ 1

3

ffiffiffiffi
8

�

s
m

M
g ln

�
C

g

�
(13)

for the typical conditions of m � M and Te � Ti. We can
then reduce the run time by reducing the mass ratio to
M=m< 1836. We typically use M=m� 100 to preserve
the separation of scales between electrons and ions, and we
see no statistically significant variation in ln� for M=m>
25. Since Eq. (3) varies as Z2, we can use like charges to
avoid recombination without affecting �e�i to leading
order. This allows us to avoid making assumptions about
interparticle forces by using the actual Coulomb force.
However, this does restrict the integration time step to
!pedt < 0:01 in order to accurately describe the close

encounters where the force changes rapidly and the particle
deflections are large. As we vary g, we vary the time step
and particle number to ensure that the solutions are con-
verged with a statistical variation in ln� of <5%. We find

that this requires Ne > 3700=g1=3 and to !pedt <

0:02g2=3 < 0:01. The dependence on g occurs because it
sets the range of scales that must be resolved to accurately
capture all relevant particle interactions. This requires g �
0:006 since our computer limits us to 106 particles and time
steps.
To obtain �i�e, the temporal decay of Te � Ti from the

MD simulations (colored lines) is fit to the analytical
solutions (black lines) in Fig. 1 for g ¼ 0:1 (Z ¼ 1,
M=m ¼ 100, ne ¼ 9� 1020 cm�3, Teo ¼ 15 eV, Ne ¼
6� 104). Figure 1(a) shows the simplest case to analyze
because Tio ¼ 12 eV (" ¼ 0:9� 1) and the analytical so-
lutions for � � 0 decay with a nearly constant exponential
rate 2�ðTeoÞt. Since the natural time unit in the MD simu-
lations is!pet, the MD result is fit to the analytical solution

by dividing the MD time scale by a scaling factor S. In
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other words, we vary S to obtain the best fit of
Teð!pet=SÞ ¼ Te½2�ðTeoÞt�, and this yields a relaxation

rate of �MDðTeoÞ ¼ !pe=2S. The MD result (red line) is

fit to the analytical solution for � ¼ 1 (middle black line)
with S ¼ 460. By using Eqs. (2) and (3) to define

ln� � �MD

�o

¼ !pe

2S�o

; (14)

we obtain ln�� 2:07. When these data are fit to the
analytical solutions for � ¼ 0 and 1.5 (not shown), we
obtain ln� ¼ 2:17 (S ¼ 440) and 2.03 (S ¼ 470), respec-
tively. These values are within the 5% statistical uncer-
tainty found for g ¼ 0:1 as we varied Ne, M=m, and the
equilibration and integration time steps.

The importance of using the solutions with the time-
dependent �e�i to analyze the data is seen in Fig. 1(b)
where Tio ¼ 3 eV (" ¼ 0:6). Here, the solutions with � �
0 decay more strongly than a simple exponential (� ¼ 0)
because �e�i increases as Te decreases from Teo ¼ 15 eV
to T1 ¼ 9 eV. The red line shows an excellent fit of the
MD result to the solution with � ¼ 1 (middle black line)
using S ¼ 465. This corresponds to ln�� 2:03 similar to
the result in Fig. 1(a). The same MD data fit to � ¼ 0
(green line) and 1.5 (blue line) yields poorer correlation
coefficients and ln� ¼ 2:51 (S ¼ 380) and 1.78 (S ¼

535), respectively. Thus, we see that the analysis with a
simple exponential (� ¼ 0) yields a value of ln� which is
systematically large by 22% when Teo=Tio ¼ 5.
It should be pointed out that the choice of Teo ¼ Tio

involves numerical compromises and requires an aware-
ness of the solutions. When Teo=Tio � 1, the fractional
change in �e�i is small during the relaxation, but the
numerical errors become more important because Te �
Ti is small. Notice that the noise is �0:2 eV in Fig. 1,
and this represents the lower bound in Teo � Tio. The
situation changes for g > 1 because we find that �e�i

becomes insensitive to Te and the simple exponential is
the preferred solution for analysis.
The variation of the scaled �e�i with g is shown in Fig. 2.

For g � 1, the MD results (diamonds) increase with g but
not quite linearly (line) because of the dependence of ln�
on g. These points were analyzed using the analytical
solution with � ¼ 1 as discussed above. For g > 1, �e�i

becomes independent of g, which suggests that ln� / 1=g.
The results in Fig. 2 were obtained over a wide range of
plasma conditions: 5 eV< Te < 6 keV, 3� 1018 cm�3 <
ne < 2� 1026 cm�3, 30<M=m< 1836, and 104 <Ne <
106 depending on g. Simulations with the same g but
different Te and ne yield the same �e�i, thereby verifying
that g is the dominant parameter for a classical Coulomb
plasma.
The MD results can be normalized using Eq. (14) to

yield ln� as shown in Fig. 3. Within the statistical uncer-
tainty of �5%, the MD results (diamonds) are in excellent
agreement with the KA and BPS theories (blue line) for
g < 0:2 where they are valid. The Spitzer estimate with
C ¼ 3 (black line) exceeds the MD results by an additive
value of lnð3=0:765Þ � 1:4. Of course, these theories
ignore correlation effects [4,17] and fail when g > 0:2,
whereas the MD simulations remain valid. The MD results
can be fit to

pe

M

m

0.01

0.1

0.01 0.1 1 10
g

FIG. 2. The scaled temperature relaxation rate from the MD
simulations vs plasma parameter g. The line is a visual aid for
linear dependence (constant ln�).
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FIG. 1 (color). Temperature difference vs time scaled to initial
relaxation rate and ionization for g ¼ 0:1 (Z ¼ 1, M=m ¼ 100,
ne ¼ 9� 1020 cm�3, Teo ¼ 15 eV, Ne ¼ 6� 104). Tio ¼ 12
and 3 eV in (a) and (b), respectively. Black lines are the
analytical solutions for � ¼ 0, 1, and 1.5 from top to bottom,
and the green, red, and blues lines are the respective MD results.
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ln�� lnð1þ 0:7=gÞ (15)

over the entire region, as indicated by the red line. This
function is only a numerical fit that reduces to the KA and
BPS results for g � 1 and captures the plateau in �e�i at
large g since ln� ) 0:7=g.

In Fig. 4, the MD simulations (diamonds) show that ln�
is insensitive to the ion charge at g ¼ 0:1. These are
conducted with like charges but maintaining ‘‘charge neu-
trality’’ (Ne ¼ ZNi). The line is normalized at Z ¼ 1 but
shows the variation 0:5 lnð1þ ZÞ one would expect from
Debye-Huckel screening. These results verify that the ions
do not participate in the screening during temperature
relaxation with electrons since it occurs faster than the

ion time scale by
ffiffiffiffiffiffiffiffiffiffiffi
M=m

p
. This is consistent with the

theories of KA and BPS.
In summary, we have performed MD simulations of

electron-ion temperature relaxation for a classical
Coulomb plasma without assumptions. For g < 0:2, ln�
agrees with the theories of KA and BPS (where they are
valid) to within the statistical uncertainty of �5% and
differ significantly from the commonly used Spitzer esti-
mate. For larger g, ln� / 1=g due to correlation effects
leading to a saturation in �e�i. In addition, ln� is found to
be insensitive to Z at constant g, thereby showing that ions
do not participate in screening during temperature relaxa-
tion. We also see no variation for M=m> 25.
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FIG. 4. Coulomb log vs ionization for g ¼ 0:1. The diamonds
are from MD, and the line is using Debye-Huckel distance
�D=
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FIG. 3 (color). Coulomb log vs plasma parameter. The dia-
monds are from MD simulations, while the black line is the
Spitzer (C ¼ 3) result, the blue line is the KA and BPS theories,
and the red line is a numerical fit [Eq. (15)] to the data.
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