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We predict nanoscale field and dipole patterns due to the broken uniformity of a laser-driven local field

in 1D and 2D lattices. They may result in size-related resonances and large field enhancement, which in

turn can give rise to low-intensity nonlinear optical effects, e.g., optical bistability, even in the ultimate

case of a pair of coupled atoms. At certain, ‘‘magic’’ numbers and configurations of atoms in a lattice, the

system may exhibit the self-induced cancellation of the suppression of a local field.
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A fundamental fact of the electrodynamics of continu-
ous media is that the microscopic (or local) field (LF) ac-
ting upon atoms or molecules is generally different from
both the applied and average macroscopic fields, because
of interparticle interaction. Its best known manifestation is
the famous Lorentz–Lorenz relation for dielectrics [1]. A
common assumption in local-field theories is that the LF is
uniform at distances much shorter than the wavelength of
light, � (amounting to the so-called ‘‘mean-field approxi-
mation’’). Recent advances in technology allow the fabri-
cation of nanoscale structures where the assumption is no
longer valid for sufficiently strong interparticle interaction.
One may expect that abandoning the mean-field approxi-
mation (similarly, e.g., to the Ising model vs the Curie–
Weiss theory of magnetic materials [2]) may bring about
significant new phenomena. Twomajor factors here make a
substantial difference compared to the magnetic phe-
nomena: the interaction is driven by an external nonstatic
(optical) field, and the system size is small.

We demonstrate in this Letter that the LF varying in
space on a scale � � may change the entire paradigm of
light–matter interaction, and allow for giant LF reso-
nances, ‘‘magic’’ configurations, and optical hystereses in
1D and 2D nanostructures. If local uniformity is broken by
any perturbation, an ordered system of particles may ex-
hibit near-periodic spatial sub-� patterns (strata) of polar-
ization. They are most pronounced in 1D and 2D dielectric
systems of, e.g., atoms, quantum dots, clusters, molecules,
etc., that allow to control anisotropy of near-field interac-
tion; if the field propagates normally to the lattice, this also
eliminates EM-propagation aspects of the problem. In
general, two major modes of the strata transpire: shortwave
(SW), with the period up to four atomic spacings, la, and
long-wave (LW) strata. The strata are standing waves of LF
excitations (called here locsitons for convenience), having
an electrostatic nature and low group velocity; they may be
classified as Frenkel [3] excitons because of their bound-
electron nature.

In the first approximation, the phenomenon is linear in
driving field, and the locsitons may be excited within a
spectral band much broader than the atomic linewidth. It
can be viewed as Rabi broadening of an atomic line by

interatomic interactions. The strata are controlled by laser
polarization and the strength of atom coupling, Q, via
atomic density, dipole moments, relaxation, and detuning.
Once jQj>Qcr ¼ Oð1Þ, the LF uniformity can be broken
by boundaries, impurities, vacancies in the lattice, etc. A
striking manifestation of the effect is large field resonances
due to locsiton eigenmodes in finite lattices, and—at cer-
tain, ‘‘magic’’ number of atoms in the lattice—almost
complete cancellation of field suppression near atomic
resonance; saturation nonlinearity results in hysteresises
and optical bistability.
Our model is based on the near-field dipole atomic

interactions, with the incident frequency ! being nearly
resonant to an atomic transition with a dipole moment da at
the frequency !0. In a standard LF [1] situation, � � la,
the field of a dipole in its near vicinity is dominated by a
nonradiative, quasistatic component. Using a 2-level
model [4] for the transition, we can write LF acting on a
dipole at r [5] as the incident fieldEin plus the sum of near-
fields from surrounding dipoles at r0 acted upon by respec-
tive LF ELðr0Þ, i.e., ELðrÞ ¼ EinðrÞ þ E�ðrÞ, where

E � ¼ � Xr0�r

latt

ðQ=4Þl3a
jr0 � rj3

3u½ELðr0Þ � u� � ELðr0Þ
1þ jELðr0Þj2=E2

satð1þ �2Þ ; (1)

u is a unit vector along r� r0, � ¼ T�! ¼ Tð!�!0Þ is
a dimensionless laser detuning, T ¼ 2=� is a transverse
relaxation time of the atom with a resonant (homogeneous)
linewidth �, Q ¼ 4jdaj2T=�@l3að�þ iÞ is a coupling
strength, and E2

sat ¼ @
2�=jdaj2�T is saturation intensity;

� is a longitudinal relaxation (or life-) time, and � is a
background dielectric constant. Assuming also that la �
jdaj=e, so the wave functions of neighboring atoms do not
overlap, we can use a semiclassical approach standard in
LF theory of resonant atoms [4]. Large dipole moments in,
e.g., alkali vapors or CO2 gas, narrow resonances in solids
[6], quantum wells and clusters, may enhance the phe-
nomenon and allow for la from a subnanometer to a few
tens of nanometers. (Surface plasmons in metal-dielectric
composites [7] may involve a long-range dipole interaction
not considered here.) The conventional approach to LF, not
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used by us here, is to set ELðrÞ ¼ ELðr0Þ and use an
encapsulating sphere around the observation point.

We consider first a basic model of 1D array of atoms
lined up along the z axis, spaced by la and driven by a
linearly polarized laser incident normally to the array
[Fig. 1(a)]. Two major configurations transpire here:
(a) Ein k êz (‘‘head-to-tail’’ lineup), and (b) Ein ? êz
(‘‘side-by-side’’ lineup). In both the cases, EL k Ein, al-
lowing scalar equations for the field. Using dimensionless
notation En ¼ ½ELðrnÞ=Ein�ðpÞ, where ðpÞ denotes polariza-
tion, ðpÞ ¼k , ? , we write (1) for both configurations as

E n � �R

2ð�þ iÞ
Xj�n

latt

Ej=S

jj� nj3 ¼ 1; 1 � n; j � N; (2)

where S¼P1
j¼1 j

�3�1:202, �R ¼ �4SFðpÞjdaj2T=�@l3a,
and factor FðpÞ is as: Fk ¼ 1 and F? ¼ �1=2. In near-

neighbor (Ising) approximation (NNA), the sum in (2) is
replaced by En�1 þ Enþ1. In general, a full summation in
(2) and NNA produce qualitatively similar results. In 2-
atom case the two approaches merge, see below.

For N ! 1, we look for solution of (2) as a sum of a
uniform but strongly anisotropic Lorentz LF,

�E ¼ ð�þ iÞ=ð�� �R þ iÞ; (3)

and oscillating ansatz �E / expð�iqnÞ, where q ¼
2�la=� is a wave number and � is a wavelength, as in,
e.g., the phonon theory [3] (except that we have an exci-
tation of bound electrons, not atomic vibrations). At atomic
resonance, � ¼ 0, and strong coupling, �2

R � 1, we have

Lorentz LF suppressed, j �Eresj2 � 1, as if it is ‘‘pushed out’’

from the array. j �Ej peaks, however, at � ¼ �R,

j �Epeakj2 ¼ j �Eresj�2 ¼ 1þ �2
R: (4)

The q numbers are found via dispersion relationship

1

S

X1

n¼1

cosðnqÞ
n3

¼ �þ i

�R

(5)

(for NNA the left-hand side in (5) is replaced by cosq).

Distinct oscillations emerge if �2
R > 1 and 1> �=�R >

�3=4 (j�=�Rj< 1 within NNA), with well-developed pat-
terns at �2

R � 1. Lattice dipole–dipole interaction can be
gauged by its Rabi frequency (and position of Lorentz
resonance), �R ¼ �R=T, or energy band 	2@j�Rj � @�
(if �2

R � 1), similar to that of solid-state [3] and photonic
crystals [8]. The limit 1� �=�R � 1 defines LW locsi-
tons,

qLW �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�=�RÞ2

q
; �LW ¼ 2�la=qLW: (6)

LW strata [Fig. 1(b), curve 1] emerge near � ¼ �R; the
longest � is up to 2�la�R. The opposite limit (for NNA it
is 1þ �=�R � 1) defines SW locsitons, with qSW 	 �
and �SW=2	 la, the finest grain of locsiton structure.
However, a mismatch between �SW=2 and la, whose ratio
is in general irrational, results in strong spatial modulation
of the SW, giving rise to a coarse LW-like structure with
the half-period roughly the same as for a LWmode; both of
those may be well pronounced [Fig. 1(b), curve 2]. At � !
0, the long and short periods converge to � ¼ 4la [Fig. 1
(b), curve 3]. Using phonon analogy, the LW’s are counter-
parts to acoustic, and SW’s—to optical phonons.
The LW’s may also be viewed as an optical analogy to

static ferromagnetic (or ferroelectric) and SW’s—to anti-
ferromagnetic states. This analogy is further supported by
difference in bistability modes for these two extremes in
the case of just two atoms (see below). The excitation at
� ¼ 0 is an example of hybrid state (curve 3), with polar-
ization pattern " 
 # 
 " � � � made possible only by optical
nature of dipoles, in contrast to fixed dipoles. A transition
from ferromagneticlike to antiferromagneticlike states
(through all the intermediate hybrid states) can be attained
by simply tuning laser frequency.
A finite array should exhibit size-related resonances.

The linear set (2) is readily solved by using numerical
matrix solver for N � 1, as is the case with EL in
Figs. 1 and 2. It is possible to approximate the solution

for finite N as a sum of �E (N ¼ 1) and the ansatz �E /
expð�iqnÞ, where both q and amplitude of �E for the
resonances are found from appropriate boundary condi-
tions; we verified it by many numerical simulations. In the
NNA case, the half-wavelength �0=2 ¼ ðN þ 1Þla of fun-
damental (LW) eigenmode is determined by boundaries as
the spacing between LF nodes, E0 ¼ ENþ1 ¼ 0. The kth
(0< k � N) resonance frequency �k is

�k ¼ �R cosð�qkÞ; qk ¼�k=ðNþ 1Þ; �k ¼�0=k:

(7)

Of these, only the peaks with odd k appear for a symmetric
driving profile, and even k—for an antisymmetric one.
Figure 1(c) depicts the NNA resonances of maximum
amplitude, Emax, for uniform driving, N ¼ 13 and �R ¼
100. The lowest amplitude envelope is Elowð�Þ � 2�E, while
the upper envelope of NNA resonant peaks is

E up � �Eðn� þ n�1
� Þ; if n� � 1; (8)

FIG. 1. Local-field E in 1D array (a) for �R ¼ 200: (b) spatial
strata of E vs position n for N ¼ 65 and various detunings �;
(c) amplitude resonances of Emax vs � (solid line).
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and¼ 2�E otherwise, where n� ¼ ðN þ 1Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
R � �2

q
. As

N increases, the resonances merge, and get damped at N 	
�R. However, even then Elow is still double of the Lorentz

field �E (3). ForN ¼ 3k� 1 (k ¼ 1; 2; . . . ), Emax dips below
Elow at � ¼ ��R=2. In this case, jqj � 2�=3, and the NNA
SW period is � ¼ 3la, so only fine SW structure remains,
resulting in antiresonance and strongest inhibition of
locsiton.

A fundamental effect of self-induced cancellation of LF
suppression emerges near atomic resonance at certain
‘‘magic’’ numbers. If �2

R � 1, the Lorentz LF at � ¼ 0
is very low (4). However, if N ¼ kmmag þ 1, where k ¼
1; 2; . . . and mmag ¼ 4 is a magic number within NNA, the

resonant LF suppression gets canceled. The highest can-
cellation is attained at N ¼ 5, with the atoms lining up as
" 
 # 
 " , where the LF amplitude of odd atoms is maxi-

mal, Emag � 1=3, and the enhancement jEmag= �Eresj2 �
�2
R=9 could be large; the LF at even atoms almost vanishes.

This is due to a standing wave with the nodes at even
atoms, hence a mode resonance at the center of atomic
line, which manifests itself by enhancement (the resonant

peak transpires in Emag= �E vs �). The effect holds for the

interaction between all atoms (2), where it gets a ‘‘devil-
ish’’ streak: mmag ¼ 13. At � ¼ 0 the first root q1 of

equation
P1

n¼1 n
�3 cosðnqÞ ¼ 0 corresponds to q1=�

being almost rational number (13q1=6� ¼ 1:000 26 . . . );
hence, the lowest integer of�=2 to match an integer of la is
13la, so N ¼ 14, with Emag � 2=15.

If the driving wave is spatially limited, a LF can be
found beyond that field area; the semantic irony here is
that the local field phenomenon is due to a nonlocal
interaction. Locsitons propagate away from their origina-
tion point. If �2

R > �2 � 1, the group velocity of locsitons

is vgr ¼ la

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

R ��!2
q

, which could be lower than the

speed of sound. This effect can be used for, e.g., developing
nanosize delay lines in molecular computers.

2D lattices exhibit even richer stratascape. For a trian-
gular lattice and the polarization of a standing laser wave

normal to the plane of lattice, we can see the formation of
radial strata around a ‘‘hole’’ in the lattice, Fig. 2(a). More
interesting is the configuration with the laser incident
normally to the plane of lattice. The simplest approach
here is the ‘‘nearest-ring’’ approximation: an atom’s envi-
ronment is viewed as a ring with six atoms evenly
‘‘spread’’ over it. This is a NNA generalization; we can

write Q ¼ ~�R=ð�þ iÞ, where ~�R is polarization indepen-
dent and coincides with 1D �R at SFðpÞ ¼ �1. Replacing

the sum in (1) by integral over the ring, we find the Lorentz
LF as isotropic �EL ¼ Einð1þ 3Q=4Þ�1. Looking for a full
LF again as �EL þ ‘‘planewave’’ locsiton/expð�iq � r=laÞ
with q making angle c with laser polarization, we obtain
an equation for dispersion qðQÞ, which is a good approxi-
mation for LW locsitons:

1þ ð3Q=4Þ½J0ðqÞ � 3J2ðqÞ cosð2c Þ� ¼ 0; (9)

where Jn is a Bessel function of the first kind. A more
detailed NNA Brillouin zone theory of triangular lattice
(which we defer to a later publication) shows that its
structure depends on driving polarization relative to the
lattice. Well-pronounced patterns in a finite 2D lattice
emerge at the ‘‘matching’’ resonances with the same Q in
the two orthogonal directions. For an almost ‘‘square’’
lattice, same order LW resonances are attained in both
dimensions by picking the right size of the lattice. (Being
out of resonance, SW have much lower amplitudes.)
Figure 2(b) depicts the vectorial patterns in a nearly square
triangular lattice of 48� 56 dipoles driven by a laser
polarized along the lattice diagonal; a 3rd order resonance
is excited in each dimension. We chose here the imaginary
field components which are dominant at the resonance; one
can see the formation of at least 6 distinct vortices.
Finite 2D lattices may exhibit even greater (vs 1D

arrays) magic cancellation of LF suppression (up to
100%), and with a persistent ‘‘cabbalistic’’ streak: within
NNA, for N � 15 the highest effect of fully canceled LF
suppression, Emax � 1:02, exists only for a six-point star
with a central atom (N ¼ 13). If Ein k uK in the inner
hexagon, the most unaffected by LF are two atoms oppo-
site to each other on the axis of symmetry normal to uK.
Any symmetry violation (e.g., by a foreign atom or mole-
cule attached) will break a sensitive balance of LF and
cancellation effect; this can be used, e.g., for biosensing.
Strong driving brings about nonlinear LF effects, e.g.,

solitons (to be addressed elsewhere). But spectacular ef-
fects, such as hystereses and optical bistability, emerge
even in steady state. Optical intrinsic bistability for
Lorentz LF was predicted in [9] and observed in [10].
However, the possibility for the nonuniform multistable
SW locsitons is a new development; both of them are
best manifested in an extreme example of just two atoms
interacting via LF, which is also a most fundamental
system to demonstrate self-induced LF nonuniformity.
WithEL k Ein being either normal (?) or parallel (k) to

the line between atoms, we can use �R with F? or Fk in (2)

FIG. 2. Local-field E in a triangular 2D lattice, with driving
polarization shown by a big arrow: (a) spatial strata of E around a
15-point-wide hole at � ¼ 100 and ~�R ¼ 69; (b) formation of
resonant vortices in local-field distribution in the ‘‘square’’-
shaped lattice at � ¼ �1000 and ~�R ¼ 1316:5 (to avoid crowd-
ing, only one of each 9 atoms is shown).
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with S ¼ 1. Normalizing both LF amplitudes, Yj ¼
Ej=Esat, j ¼ 1, 2, and driving, X ¼ Ein=Esat, and designat-

ing �R2 ¼ �R=2> 0, we write

Y3�j ¼ Xþ�R2ð�� iÞYj=ð1þ�2 þ jYjj2Þ; j¼ 1;2:

(10)

For a Lorentz LF, it yields a cubic equation for j �Yj2, readily
analyzed. The onset of bistability for �2

R2 � 1 occurs at

� � �R2, �R2 � � >
ffiffiffi
3

p
, Fig. 3(a), and the threshold driv-

ing is X2
thr � ð2= ffiffiffi

3
p Þ3��1

R2 � 1, much below saturation.

The 2-atom multistable SW locsiton emerges at the oppo-
site side of the band, at � � ��R2. In the limit X2 � �2

R2,
aside from a Lorentz LF, �Y � X=2, we find a nonuniform
LF solution Y1;2 ¼ �Y � s, where

s ¼ ð�= ffiffiffi
2

p Þð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R

p � i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R

p Þ; (11)

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R2ð�R2 þ �Þ � 2 �Y2 � �Y2R

p
, R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

R2=
�Y4

q
.

The solution�s allows for interchange Y1 $ Y2, similarly
to the counterwaves bistability in a ring resonator [11]. The

necessary conditions for multistability are �R2 þ � >
ffiffiffi
3

p
and X2 > 4�R2. Near this threshold the solution is trival-
ued: bistable (11) and (unstable) Lorentz solution �Y. At
�R2 þ � > 2 it can be five valued [Fig. 3(b)], but only two
of them remain stable. The two dipoles then counteroscil-
late, �s, akin to two spins, one aligned and another coun-
teraligned with the driving field.

Within solid-state and spin analogies, we note that our
findings emphasize phenomena (multiple resonances,
magic numbers and shapes, etc.) in relatively small arrays
of atoms, in contrast to, e.g., standard approaches to mag-
netism focused on thermodynamic properties of large sys-
tems. Applied to magnetic systems, this new emphasis on
nanostructures may reveal similar phenomena.

Nanostrata and locsitons can be observed either via size-
related resonances, or x-ray or electron energy loss spec-
troscopy of the strata. They have promising potential for
the molecular computers and nanodevices [12]. The ma-
jor advantage of locsitons vs electrons in semiconductors

or metals is that they are not based on current or
charge transfer. This may allow for a drastic reduction of
the size limit for elements currently based on metal oxide
semiconductors, which on a scale below 10 nm suffer from
heat-related problems. The locsiton-based devices could be
a complimentary entry into the field as an alternative to
emerging technologies such as plasmonics [13] or spin-
tronics [14] by offering both passive (e.g., transmission
lines and delays), and active nanoelements for switching
and logics. Another application could be biosensing de-
vices, where target-specific receptor molecules form a
locsiton-supporting lattice or are attached to its sites; a
localized locsiton occurs whenever a target biomolecule
attaches to a receptor. Finally, exciting opportunities exist
in arrays and lattices with inverse population created by an
appropriate (e.g., optical) pumping, which may lead to a
laserlike locsiton stimulated emitter (‘‘locster’’).
In conclusion, sufficiently dense self-interacting atomic

arrays (including atomic pair) and lattices illuminated by a
near-resonant radiation can exhibit nanostratification of
local-field and atomic polarization, resulting in a host of
linear and nonlinear effects, in particular, size-related reso-
nances and field enhancement, ‘‘magic’’-number cancella-
tion of local-field suppression and optical bistability.
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curves—for unstable modes. (The dots mark imaginary, and no-
dots—real parts of s.)
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