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We present a quantum Monte Carlo study of the zero-temperature equation of state of neutron matter

and the computation of the 1S0 pairing gap in the low-density regime with � < 0:04 fm�3. The system is

described by a nonrelativistic nuclear Hamiltonian including both two- and three-nucleon interactions of

the Argonne and Urbana type. This model interaction provides very accurate results in the calculation of

the binding energy of light nuclei. A suppression of the gap with respect to the pure BCS theory is found,

but sensibly weaker than in other works that attempt to include polarization effects in an approximate way.
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Superfluidity of neutron matter is currently a subject of
great interest across the astrophysics, nuclear physics, and
many-body physics communities. Pairing of nucleons may
occur in different channels. At densities relevant for the
phenomenology of the stellar outer core, a crucial role is
played by the energy gap of the 1S0 paired state. It has

direct consequences on the low-density equation of state,
the cooling process, the phenomenology of glitches [1,2],
and on neutrino emission. In addition, the effect of pairing
of neutrons in the low-density regime plays an important
role also in the pairing effects observed in neutron-rich
nuclei, where the energy is sensibly more stable if the total
number of nucleons A is even [3] (see, for example,
Ref. [1] for a review).

The occurrence of superfluidity in neutron matter is one
of the many examples of pairing effects in low-density
many-fermion systems. Such systems are often character-
ized by the parameter � ¼ kFa, where kF is the Fermi
momentum, and a is the scattering length, which for neu-
tron matter reaches a value as low as �14:8. At this value
we can still regard the system as a weak BCS superfluid
[4], but at the same time the nucleon-nucleon interaction
induces strong correlations among the neutrons.

This fact leads to a second main reason of interest, i.e.,
the study of the interplay of the correlations induced by the
strong repulsion among neutrons at short distance, and by
the spin dependent forces with a strong tensor component,
and the occurrence of the BCS state. A clean signature of
this effect can be found in the behavior of the BCS energy
gap �. This quantity has been computed by several authors
within many different approximation schemes. A mean-
field BCS treatment gives a peak value of the energy gap
� ’ 3 MeV at kF � 0:8 fm�1, almost irrespective of the
nucleon-nucleon (NN) potential [5,6]. This is not surpris-
ing because all NN potentials are fitted to reproduce the
same S- and P-wave components in the scattering experi-

ments. The situation becomes more intricate when so-
called polarization effects, i.e., the interaction with the
surrounding medium are introduced. There are two ways
to attack the problem. The first is still based on the solution
of the BCS equation (a two-body problem) with an effec-
tive interaction which approximates the background ef-
fects. Alternatively, a more rigorous calculation should
include many-body effects by solving the many-body prob-
lem with the full interaction, and compute the gap between
the BCS and normal state directly as the energy difference.
At this level, an accurate computation of the BCS gap can
be obtained only if (1) A realistic interaction including all
relevant contributions (and, in particular, hard-core repul-
sion and tensor) and (2) A reliable ab initio computational
method is employed. The present disagreement among
different estimates of the energy gap presently available,
and which is shown in Fig. 1, can be explained by the lack
of at least one of these two conditions.
The inclusion of polarization effects shows some general

trends in the behavior of the BCS gap. It has been pointed
out that the screening by the medium could strongly reduce
the pairing strength in the 1S0 channel. Actually, the di-

verse methods used in connection with realistic NN inter-
actions all give a maximum for� between 0.7 and 1.0MeV
at a density corresponding to a Fermi momentum between
0.7 and 1:0 fm�1 [7,8]. Recent Brueckner theory calcula-
tions [9] and Hartree Fock calculations [10] give a remark-
ably larger value (� 1:8 MeV). A recent quantum
Monte Carlo (QMC) calculation [11], using the AV18
NN potential projected in the 1S0 channel, gave in the

very low-density range corresponding to kF � 0:55 fm�1

a pairing gap sensibly larger with respect to previous
results, yet lower than the Brueckner calculation of
Ref. [9], and Hartree Fock calculations of Ref. [10].
In this Letter we propose a systematic computation of

the 1S0 pairing gap in neutron matter as a function of the
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density of the system in which both the conditions of using
a complete realistic interaction (an Argonne-Urbana class
potential) and an accurate ab initio method (the auxiliary
field diffusion Monte Carlo within the fixed phase approxi-
mation) are fulfilled, with the aim of benchmarking exist-
ing results. QMC techniques have the advantage of
accurately solving for the many-body ground state, and
provide a powerful tool to study a wide range of systems
both finite and homogeneous. The auxiliary field diffusion
Monte Carlo (AFDMC) method is particularly well suited
to deal with large nucleonic systems [12]. In particular, the
AFDMCmethod gives accurate results for the properties of
nuclei [13], symmetric nuclear matter [14], and neutron
matter [15], for which studies performed with Green’s
function Monte Carlo technique are limited to 14 neutrons
in a periodic box [16]. The efficiency of the AFDMC
method lies in the fact that spin states of nucleons are
sampled, rather then explicitly summed, by means of a
Hubbard-Stratonovich transformation. It can be extended
to systems with over a hundred nucleons. Larger systems
are needed to rule out finite-size effects in the estimates.
The computations presented in previous AFDMC method
works [15,17] were affected by serious technical issues
related to the approximations used to cope with the fermion
sign problem. In particular, these approximations led to
rather poor energy upper bounds in presence of the tensor-
tau interaction in the Hamiltonian, and therefore nuclei and
nuclear matter could not accurately be simulated. Such
technical issues have been totally solved by the use of
the fixed phase approximation [13,14,18] instead of the
constrained path. For this reason our previous calculations
of the energy gap of superfluid neutron matter [17] belongs
to an old generation of AFDMC method simulations,

which have been much improved upon after the introduc-
tion of the fixed phase constraint.
Our calculations for bulk neutron matter are based on a

nonrelativistic Hamiltonian of N neutrons in a periodic
box:

H ¼ � @
2

2m

XN

i¼1

r2
i þ

X

i<j

vij þ
X

i<j<k

Vijk; (1)

where i and j are neutron indices, and vij and Vijk are,

respectively, the two- and the three-nucleon interactions
(namely the Argonne v08 (AV80) and the Urbana IX (UIX).

The AV80 [19] interaction is a simpler form of the more
accurate Argonne v18 (AV18) [20]; it contains only 8
operators instead of 18, it preserves the same isoscalar
part of AV18 in S and P partial waves as well as in the
3D1 wave and its coupling to

3S1, and it correctly gives the
experimental deuteron energy. The advantage of using
AV80 rather than the AV18 interaction is that it has a
more suitable form for the AFDMC method calculation.
In the low-density regime where � < 0:04 fm�3 the AV80
gives the same energy as the AV18 interaction within 3%
[21]. The Urbana UIX interaction was fitted to correct the
overbinding of AV18 in the ground state of light nuclei and
to reproduce the empirical value of the equilibrium density
of nuclear matter [22].
We consider the full nuclear Hamiltonian, instead of

projecting in the pairing channel only, in order to include
all the many-body correlations in the system that the
effective bare interactions eventually miss.
The AFDMC method calculations start from a Jastrow

BCS trial wave function of the form

 T ¼
�Y

i<j

fJðrijÞ
�
�BCSðR; SÞ; (2)

where R ¼ fr1; . . . ; rNg and S ¼ fs1; . . . ; sNg are the space
and spin coordinates of the neutrons. The factor fJ is the
central component of the Jastrow correlation computed in
the Fermi hypernetted chain–single operator chain ap-
proximation scheme. Its only role is to avoid the overlap
between neutrons, and its detailed form has no influence on
the final result. The�BCS antisymmetric function is built as
a Pfaffian [23] of both paired and single particle orbitals.
Paired orbitals are defined by

�ðrij; si; sjÞ ¼
X

�

vk�
uk�

eik��rij�ðsi; sjÞ; (3)

where � is a spin function coupling two neutrons in the
singlet state. The single particle orbitals are plane waves
fitting Born–von Kármán periodic boundary conditions.
The coefficients u and v entering the paired orbitals are
provided by a correlated basis functions (CBF) calculation
[5]. In the case of evenN, no single particle wave functions
are considered in the Pfaffian, while if N is odd the single
particle plane wave accommodating the unpaired neutron
is chosen in order to minimize the energy of the system.
Finite-size effects due to the truncation of the potential are
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FIG. 1 (color online). The 1S0 pairing gap of neutron matter as
a function of the Fermi momentum kF computed with different
methods. In the figure we display works of Wambach et al. [27],
Chen et al. [28], Schulze et al. [7], Schwenk et al. [8], Cao et al.
[9], Gezerlis and Carlson [11] and Margueron et al. [10]. All the
results are compared with a BCS calculation (dashed line).
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reduced following the common procedures described in
[15].

Because the AFDMC method projects out the lowest
energy state with the same symmetry and phase of the trial
wave function from which the projection is started, once
the character of the initial state (BCS or normal Fermi
liquid) is given, the computed energy will refer to that
particular phase. It is therefore possible to compare the
two equations of state, and discuss the relative stability. In
Fig. 2 we display the resulting values as a function of kF
normalized to the corresponding Fermi gas energy. In al-
most all of the range of densities considered the BCS phase
is stable with respect to the normal Fermi liquid, although
the relative energy difference never exceeds 4%.

When the Fermi wave vector increases beyond kF ¼
0:6 fm�1 the normal state is energetically more favorable
than the BCS state, with an energy difference smaller than
1% of the total energy. We can therefore conclude that in
the low-density regime neutron matter is in a 1S0 superfluid
phase. In this regime the neutron-neutron interaction is
dominated by this channel, having a scattering length of
about a ¼ –18:5 fm. Quantum Monte Carlo calculations
of the equation of state (EOS) of dilute cold fermions
showed that in the unitary limit (when akF ! �1), the
ratio between the energy of the system and the energy of
the Fermi gas is � ¼ 0:42ð1Þ [24–26]. The deviation from
this asymptotic value is a measure of the relevance of the
details of the interaction in determining the equation of
state of the system in the range of densities considered.
One should also consider the fact that at larger densities the
effect of pairing in scattering channels other than the 1S0
becomes important.

In a full many-body calculation the superfluid gap can be
evaluated by using the difference

�ðNÞ ¼ EðNÞ � 1
2½EðN þ 1Þ þ EðN � 1Þ�; (4)

where N is taken to be odd. It should be noted that the
above expression is valid only if EðNÞ, EðN þ 1Þ, and
EðN � 1Þ are computed by keeping the volume V of the
system fixed. This means that the density would be differ-
ent in the N, N þ 1, N � 1 neutron systems. Because our
simulations are usually performed at fixed density, we
checked the dependence of the energy on the constraint
used. Considering a number of particles around N ¼ 14,
which is the lowest number of neutrons used in the simu-
lations, and therefore the worst case scenario, we evaluated
the gap at fixed volume first, and then at fixed density. The
difference in the results is well within statistical errors.
Several simulations at different values of N were per-

formed in order to evaluate the gap and the corresponding
statistical error bars. A first check concerned the depen-
dence of the gap estimate on the number of neutrons used
in evaluating the difference in Eq. (4). The values of Fermi
momentum considered for the check were 0.4, 0.6, and
0:8 fm�1, and the numbers of neutrons were taken in the
ranges N ¼ 12–18 and N ¼ 62–68. For each case, we
evaluated the gap around the odd N according to Eq. (4).
At each density �ð66Þ (the averaged gap between N ¼ 62
and 68) is always smaller than �ð14Þ. The same behavior
was also observed in the QMC calculation of Gezerlis and
Carlson [11] using the simple interaction projected in the
pairing channel. In that paper computations were extended
also to N ¼ 92. The gap values �ð66Þ and �ð92Þ are equal
within error bars and approach the infinite limit in the same
way as in the mean-field BCS calculation. Unfortunately in
QMC simulations, in the absence of a correlated sampling
scheme, it is impossible to use arbitrarily large values ofN,
because the gap has to be evaluated as the difference
among total energies. This means that the accuracy re-
quired in the evaluation of the energy makes the computa-

tional time increase with
ffiffiffiffi
N

p
, in addition to theN3 standard

scaling for Fermion simulations.
A finite-size effect might be connected to the relative

size of the neutrons’ Cooper pair and the simulation box.
The Heisenberg uncertainty principle can be used to esti-
mate the dimension of a Cooper pair as �x ’ �F=ð�kFÞ
where �F is the Fermi energy per particle. Taking � ¼
2 MeV, and kF ¼ 0:8 fm�1, we have therefore �x ’
6:6 fm, much smaller than the typical box size, which for
66 neutrons is �16 fm. A consequence of this analysis is
also that relevant correlation lengths should be all con-
tained in the simulation box, implying that an explicit
inclusion in the wave function of long range effects (which
are automatically included in mean-field calculations)
should not lead to significant differences in the results.
We report in Fig. 3 the estimate of the 1S0 superfluid gap

as a function of the Fermi momentum kF. The AFDMC
method points are compared with results of the CBF cal-
culation [5] used to determine the BCS coefficients enter-
ing the trial wave function. We also display, for the sake of
comparison, the family of more recent calculations. As can
be seen, the AFDMC method calculations give values of �
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FIG. 2 (color online). The EOS of neutron matter in the low-
density regime. The two calculations were performed using
different trial wave functions modeling a normal and a BCS
state. The fit is a guide to the eye.

PRL 101, 132501 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

26 SEPTEMBER 2008

132501-3



lower than those of the CBF calculation. This behavior is
opposite to that reported in a previous paper in which the
same comparison was made [17]. The difference can be
attributed both to the larger number of neutrons used in the
present work, and to the use of the fixed phase approxima-
tion instead of the constrained path approximation to keep
the sign problem under control.

We confirm the depletion of the superfluid gap with
respect the BCS result. However, our results are leaning
towards the calculations giving a maximum value of the
gap of order 2 MeV. The other available QMC calculations
by Gezerlis and Carlson [11] differ within error bars for
densities corresponding to kF < 0:3 fm�1. At kF ¼
0:55 fm�1 they predict a gap about 30% smaller with
respect to the AFDMC method estimate. We believe that
such difference comes from the fact that when increasing
the density, the correlations induced by the interactions in
channels others than 1S0 becomemore and more important,

and give a sizeable contribution to the value of the energy,
and consequently to the gap.

In conclusion, we have presented the results of accurate
AFDMC method simulations for evaluating the superfluid
gap in neutron matter with a realistic nucleon-nucleon
potential. The present calculations are qualitatively and
quantitatively improved over previous diffusion
Monte Carlo results, and are to be regarded as a benchmark
for other methods. While at very low densities the results
agree with the Green’s function Monte Carlo results of
Gezerlis and Carlson, at higher densities the gap turns out
to be of about 2 MeV, in qualitative agreement with recent
Brueckner-Hartree-Fock estimates.
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FIG. 3 (color online). AFDMC method calculation of the 1S0
pairing gap of neutron matter as a function of the Fermi mo-
mentum kF and compared with more recent results. The
AFDMC method results are indicated by large squares with
statistical error bars. Other results are some of those displayed
in Fig. 1, and the dashed line with circles is the CBF calculation
of Fabrocini et al. [5].
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