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We describe the kink solitary waves of a massive nonlinear sigma model with an S2 sphere as the target

manifold. Our solutions form a moduli space of nonrelativistic solitary waves in the long wavelength limit

of ferromagnetic linear spin chains.
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The massive nonlinear S2-sigma model.—In this Letter
we shall concentrate on the 1D nonlinear S2-sigma model:
(a) The space-time is the (1þ 1)-dimensional R1;1

Minkowski space. x�;� ¼ 0; 1 (x0 � t, x1 � x) denotes
a point in R1;1. We choose the metric in the form g�� ¼
diagð1;�1Þ, and the d’Alembertian reads h ¼ @2

@t2
� @2

@x2
.

(b) The target (internal) space is the S2 sphere. This is in
contrast with the original Gell-Mann–Lèvy model where
the target space is S3 [1]. Three scalar fields � ¼ ð�aÞ,
a ¼ 1, 2, 3, define a map �:R1;1 ! S2 if they are con-
strained to the surface in R3:

�2
1ðx�Þ þ�2

2ðx�Þ þ�2
3ðx�Þ ¼ R2: (1)

The action

S ¼
Z

dtdx

�
1

2
g��

X3
a¼1

@�a

@x�
@�a

@x�

�
(2)

seems to be simple, but together with the constraint (1)
governs the complicated nonlinear dynamics of two
Goldstone bosons with coupling constant 1

R . In one spatial

dimension, however, Goldstone particles do not exist [2].
The infrared asymptotics of the (1) and (2) system induces
a potential energy density that we choose as

Vð�1; �2Þ ¼ �2

2
�2

1ðt; xÞ þ
�2

2
�2

2ðt; xÞ; (3)

giving masses � and � to the massless excitations.
With no loss of generality, we assume that �2 � �2 > 0,

and we define the nondimensional parameter �2 ¼ �2

�2 , 0<

�2 � 1, measuring the ratio between particle masses. We
also rescale the space-time coordinates to address non-
dimensional variables: x� ! x�

� . Solving the constraint

the action reads

S ¼ 1

2

Z
dtdx

�X2
�¼1

@��

@x�
@��

@x�
��2

1 � �2�2
2

þ
P

2
�¼1ð��@

���Þ
P

2
�¼1ð��@���Þ

R2 ��2
1 ��2

2

�
: (4)

Despite the potential energy density being quadratic,
there are two homogeneous minima of the action (vacua):

the North and South Poles: �A ¼ ð0; 0; RÞ, �
�A ¼

ð0; 0;�RÞ. Thus, the discrete symmetry of the action (4)
Z2 � Z2 � Z2 generated by �a ! ��a, a ¼ 1, 2, 3, is
spontaneously broken to Z2 � Z2 (generated by �� !
���, � ¼ 1, 2). If the two masses were equal, this un-
broken symmetry would become the SO(2) rotation group
around the North-South Pole axis.
Topological kinks.—Using spherical coordinates, �1 ¼

R cos’ sin	, �2 ¼ R sin’ sin	, and �3 ¼ R cos	, in the
chart S2 � f �Ag of S2, the energy of static configurations,
	ðt; xÞ ¼ 	ðxÞ 2 ½0; 
Þ, ’ðt; xÞ ¼ ’ðxÞ 2 ½0; 2
Þ, and
E ¼ R

dxEð	ðxÞ; ’ðxÞÞ, and the potential energy density

read

E¼
Z
dx

�
R2

2

��
d	

dx

�
2þsin2	

�
d’

dx

�
2
�
þVð	;’Þ

�
;

Vð	ðxÞ;’ðxÞÞ¼R2

2
sin2	ðxÞð�2þð1��2Þcos2’ðxÞÞ: (5)

The configuration space of the system C ¼
fMapsðR;S2Þ=E <þ1g is formed by four disconnected
sectors according to the tendency of every finite energy
configuration towards either the North or the South Pole at
the extremes of the spatial line x ¼ �1.
Solutions for which the temporal dependence is of the

form

	ðt; xÞ ¼ 	

�
x� vtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
�
; ’ðt; xÞ ¼ ’

�
x� vtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
�
;

for some velocity v, are solitary or traveling waves.
Lorentz invariance provides all the solitary waves from
the static solutions of the field equations:

d2	

dx2
� sin2	

2

�
d’

dx

�
2 ¼ sin2	

2
ðcos2’þ �2sin2’Þ; (6)

d

dx

�
sin2	

d’

dx

�
¼ 1� �2

2
sin2	 sin2’: (7)

On the orbits ’K1
ðxÞ ¼ � 


2 (half-meridians) the system

(6) and (7) becomes the ordinary differential equation of
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the pendulum and the separatrix trajectories between
bounded and unbounded motion;

� d2	

dx2
þ �2

2
sin2	 ¼ 0 ) 	K1

ðxÞ ¼ 2 arctane��ðx�x0Þ

are the solitary waves or kinks (at their center of mass) of
finite energy: EK1

¼ 2R2�, interpolating between the

North A and South �A Poles. Thus, these kinks belong to a
different sector in configuration space than the vacua, an
evident fact in Cartesian coordinates; see Figs. 1 and 2 [3]:

�K1ðxÞ ¼
�
0;

1

cosh½�ðx� x0Þ� ;� tanh½�ðx� x0Þ�
�
:

The half-meridians ’K2
ðxÞ ¼ 0 or ’K2ðxÞ ¼ 
 are also

good trial orbits in the sense that they provide new kinks of
finite energy EK2

¼ 2R2:

� d2	

dx2
þ 1

2
sin2	 ¼ 0 ) 	K2

ðxÞ ¼ 2 arctane�ðx�x0Þ

via finite action solutions of another pendulum equation.
These solitary waves live in the same sector of the con-
figuration space as the previous ones and look similar in
Cartesian coordinates (see Figs. 1–3):

�K2ðxÞ ¼
�

1

coshðx� x0Þ ; 0;� tanhðx� x0Þ
�
:

At the � ¼ 1 limit, all the half meridians ’K’
ðxÞ ¼ ’ 2

½0; 2
Þ are good trial orbits. There is a one-parametric

family of solitary waves: 	K’
ðxÞ ¼ 2 arctane�ðx�x0Þ,

�K’ðxÞ ¼
�

cos’

coshðx� x0Þ ;
sin’

coshðx� x0Þ ;� tanhðx� x0Þ
�
;

degenerated in energy: EK’
¼ 2R2;8’.

The nonlinear massive sigma model in elliptic coordi-
nates on the sphere.—We could now try to search for more
kinks even in the case �2 < 1 of distinct masses by using
Rajaraman’s trial orbit method [4], but instead we shall
profit from the fact that the ordinary differential equation
system (6) and (7) is integrable using elliptic coordinates in
the S2 sphere. In S2 we fix the two points: F1 � ð	f; 
Þ,
F2 � ð	f; 0Þ, 	f 2 ½0; 
2Þ. The distance between them is

d ¼ 2f ¼ 2R	f < 
R; see Fig. 4.

Given a point� 2 S2, let us consider the distances r1 2
½0; 
R� and r2 2 ½0; 
R� from� to F1 and F2. The elliptic
coordinates of� are half the sum and half the difference of

r1 and r2: � � ðu ¼ r1þr2
2 ; v ¼ r1�r2

2 Þ. The formulas

�1ðt; xÞ ¼ R

sf
su sv; �2ðt; xÞ ¼ R

cf
cu cv;

�3ðt; xÞ ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� su2 sv2

sf2
� cu2 cv2

cf2

s

allow one to pass from elliptic to Cartesian coordinates.

Here, a simplified notation is used: su ¼ sinuðt;xÞR , cu ¼
cosuðt;xÞR , sv ¼ sinvðt;xÞR , sf ¼ sin	f, etc. The differential

arclength in S2 in this system of coordinates is

ds2
S2 ¼ 1

2

su2 � sv2

su2 � sf2
du2 þ 1

2

su2 � sv2

sf2 � sv2
dv2:

Choosing the foci in such a way that cf2 ¼ �2, the energy
density of our system in elliptic coordinates reads

E ½u; v� ¼ 1

2

�
su2 � sv2

su2 � sf2

�
du

dx

�
2 þ su2 � sv2

sf2 � sv2

�
dv

dx

�
2
�

� fðuÞ þ gðvÞ
su2 � sv2

; (8)

fðuðxÞÞ ¼ R2

2 su2ðsu2 � sf2Þ, gðvðxÞÞ ¼ R2

2 sv2ðsf2 � sv2Þ.
The mechanical analogy demands that we think of E as

the Lagrangian, x as the time, U½uðxÞ; vðxÞ� ¼
�V½uðxÞ; vðxÞ� as the mechanical potential energy, and
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FIG. 1 (color online). (a) K1 and K2ð�2 ¼ 1
2Þ kink orbits.

(b) K1 (blue, lowest peak) and K2 (red, highest peak) kink
energy densities.

(a) (b)

FIG. 2 (color online). (a) K1 kinks. (b) Perspective from one
component of the boundary of the target sphere�
the spatial line infinite cylinder: S2 � R. The meridian ’K1

¼


2 , ’K1

¼ � 

2 is plotted as orthogonal to the spatial line.

(a) (b)

FIG. 3 (color online). (a) K2 kinks. (b) Perspective from one
component of the boundary of the infinite cylinder: S2 � R. The
meridian ’K2

¼ 0, ’K2
¼ 
 is plotted aligned with the spatial

line.
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the target manifold S2 as the configuration space. The
structure of E½u; v� is such that we are dealing with a
type I Liouville model [5] on the sphere, i.e., a dynamical
system which is Hamilton-Jacobi separable in elliptic co-
ordinates. The kink orbits (finite action trajectories) and the
kink profiles (‘‘time’’ schedules of these trajectories) are
given in the Hamilton-Jacobi framework [6,7] via the
quadratures: (pu ¼ @E

@ _u , pv ¼ @E
@ _v ),

Z sgðpuÞduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðsu2 � sf2ÞfðuÞp �

Z sgðpvÞdvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðsf2 � sv2ÞgðvÞp ¼ R2�2;

Z sgðpvÞsu2dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðsu2 � sf2ÞfðuÞp �

Z sgðpvÞsv2dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðsf2 � sv2ÞgðvÞp ¼ xþ �1:

Nontopological kinks.—In this way we find a family of
nontopological kink (NTK) orbits by integrating the first
quadrature (they start and end either at the North or the
South Pole, and they live in the vacua sectors of the
configuration space) parametrized by the integration con-

stant C ¼ eR
2�2sf

2
:

C ¼
�j tanu�f

2R tanuþf
2R j1=2cf

j tan u
2R j

�
sgpu

�
� j tan v

2R j
j tanv�f

2R tanvþf
2R j1=2cf

�
sgpv

:

The kink profiles of these nontopological solitary waves
given by the integration of the second quadrature

e2ðxþ�1Þcf ¼ j tanu�f
2R tanuþf

2R jsgpu

j tanv�f
2R tanvþf

2R jsgpv

depend on one integration constant, �1, which sets the
center of each kink; see Figs. 5 and 6.
The Hamilton-Jacobi method also provides the energy

of the NTK. The Hamilton characteristic function (the
solution of the Hamilton-Jacobi stationary equation) for
zero mechanical energy is

FðuÞ þGðvÞ ¼ ð�1ÞsgpuR cos
u

R
þ ð�1ÞsgpvR cos

v

R
:

From this function we compute the energy of the NTK
kinks:

EKð�2Þ ¼ 2RjGð0Þ �GðfÞj þ 2RjFðfÞ � Fð
� fÞj:
All the NTK kinks have the same energy and satisfy the
kink mass sum rule:

EKð�2Þ ¼ 2R2ð1þ �Þ ¼ EK2
þ EK1

;

K1 and K2 are singular kinks that arise at the �2 ! j1j
limit of the NTK kink moduli space. Their orbits lie on the
boundary of the elliptic rectangle and the v ¼ 0 axis; see
Fig. 7. The K1 kink orbit is the straight line vK1

ðxÞ ¼ 0.

The K2 kink orbit, however, is a three-step trajectory: the
u ¼ f, u ¼ 
� f, and v ¼ �f edges of the rectangle.
Observe that all the NTK orbits starting from the North

Pole A (South Pole �A) meet at one of the antipodal foci
�F1 � �F2 (foci F1 � F2), which are thus conjugate points to

FIG. 4 (color online). Foci and antipodal foci of the elliptic
system of coordinates on the sphere.

(a) (b)

FIG. 6 (color online). (a) Several NTK kink orbits. (b) NTK
energy densities for three different values of �2: (1) �2 ¼ �3,
highest peak on the left (blue); (2) �2 ¼ 0, symmetrical peaks
(green); (3) �2 ¼ 10 highest peak on the right (red).

(a) (b)

FIG. 5 (color online). (a) A K�2
ðj�2j<1Þ NTK kink.

(b) Perpendicular cross section of the field variation.
FIG. 7 (color online). Singular (red, KA�F�A; green, KA �A) and
generic (blue, KAA) kink orbits in the elliptic rectangle.
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the Poles. According to the Morse index theorem, these
kinks are unstable; see [8,9]. The K2 orbits also cross the
foci, and only the kinks of type K1 are stable.

Solitary spin waves.—The Wess-Zumino action

SWZ ¼ R2
Z

dtdx
X3
a¼1

Aa½�ðt; xÞ� @�a

@t
ðt; xÞ

produces the Euler-Lagrange equation:

@Aa

@t
¼ X3

b¼1

�
�Ab

��a

� �Aa

��b

�
@�b

@t
¼ X3

b¼1

X3
c¼1

"abcBc½��@�b

@t
:

We choose the non-null components of the ‘‘vector poten-
tial’’ in the North and South hemispheres of the target
space in the form (using "�� ¼ �"��, "12 ¼ 1)

A�
� ½�ðt; xÞ� ¼ � X2

�¼1

"��
��ðt; xÞ

2Rð�3ðt; xÞ � RÞ ; � ¼ 1; 2;

a ‘‘magnetic monopole field’’ arises in the target space:

Ba½�ðt; xÞ� ¼ �aðt;xÞ
R3 . The combined Euler-Lagrange equa-

tions for SWZ þ S are

1

R

X3
b¼1

X3
c¼1

"abc�cðt; xÞ@�b

@t
ðt; xÞ

þh�aðt; xÞ þ �V

��a

ðt; xÞ ¼ 0: (9)

At the long wavelength limit ! � 1
R , the system (9)

becomes the Landau-Lifhsitz equations for ferromagne-
tism with a dispersion relation: !2ðkÞ ¼ R2ðk2 þ 1Þðk2 þ
�2Þ. The connection between the semiclassical (high-spin)
limit of the Heisenberg model with the quantum nonlinear
sigma model is well established [10]. Thus, our kinks,
which are also static finite energy solutions of (9), are
solitary spin waves in the low-energy regime of quantum
ferromagnets, although the symmetry is contracted from
Lorentzian to Galilean.

Conclusions.—In this Letter we have reached the fol-
lowing conclusions about the kink manifold of the 1D
massive nonlinear S2-sigma model: (i) If the masses of
the pseudo-Goldstone particles are equal, there exist a S1

family (fixed the kink center of mass) of topological kinks
degenerated in energy living on all the half-meridians of
the S2 sphere. When the masses differ, only two pairs of
topological kinks survive, each pair of kinks having dis-
tinct energy. (ii) Even if the masses of the pseudo-
Goldstone particles are different, we have shown that there
exist a one-parametric family (for fixed center of mass) of
nontopological kinks degenerated in energy by using el-
liptic coordinates on the S2 sphere. (iii) It is also shown
that there is a curious kink mass sum rule between the
nontopological and topological kinks and that only one of
the topological kink pairs is formed by stable kinks.
(iv) Finally, we have noticed that by adding a Wess-
Zumino–type term to the action our kinks are solitary
spin waves in the long wavelength limit of ferromagnetic
materials.
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