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In this Letter, we develop an analytical approach which provides an explicit determination of mean

first-passage times (MFPTs) for random walks in bounded domains for a wide class of transport processes.

In particular, we derive for the first time explicit expressions of MFPTs for emblematic models of

transport in complex media, such as diffusion on deterministic and random fractals. This approach relies

on a scale-invariance hypothesis and a large volume expansion of the MFPT, which actually proves to be

very accurate even for small system sizes as shown by numerical simulations. This explicit determination

of MFPTs can be straightforwardly generalized to further useful first-passage observables such as

occupation times and splitting probabilities.
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First encounter events constitute limiting factors of a
wide range of dynamical processes of practical interest.
This is exemplified at the microscopic scale by transport
limited chemical [1] and biochemical reactions [2–4], and
at larger scales by the behavior of animals searching for
food resources [5–7] or even the spread of diseases in
human social networks [8]. A first step to quantify these
first encounter events consists in evaluating a first-passage
time (FPT), namely, the time it takes a random walker to
reach a given target site [9].

This highly desirable quantity has motivated a huge
number of theoretical works in recent years (see [9,10]
for review). However, explicit expressions of mean FPTs
(MFPTs) in bounded domains often remain out of reach
even for simple random walks, and so far have been
obtained only in a few specific situations. An important
example of exact result is given by mean return times, for
which the target and starting points are one and the same,
and which actually turn out to be given by an elegant exact
expression first derived by Kac [11]. Other explicit formu-
las have been obtained for exit times (i.e., the time needed
to exit a sphere by any of its points) [12,13] or averages of
MFPTs over the starting point [14–16], whose drawback is
to lose track of the source or target distance dependence.

Recently, a general formula giving the MFPT in scale
invariant confined media has been obtained [17,18]. This
formula shows a linear scaling of the MFPT with the
volume of the confining domain, and puts forward the
importance of its dependence on the source or target dis-
tance, in particular, in the case of constrained environments
such as percolation clusters or other fractal structures. This
effect has strong implications in real situations such as
chemical reactions in crowded environments like living
cells [18,19]. However, this determination of the MFPT
is not fully explicit as it involves two constants which have
remained undetermined so far.

Here we provide simple relations verified by these con-
stants, which permit us to determine them explicitly and

show that they take one and the same value for a wide class
of situations. This allows for an explicit solution of long
standing problems, namely, a zero constant formula of the
MFPT in bounded domains for emblematic models of
transport such as diffusion on deterministic and random
fractals.
We start by extending the theory developed in [17] to

compute the MFPT of a Poissonian continuous time ran-
dom walk [10,20] to a target rT , starting from a source
point rS, evolving in a discrete bounded domain of N sites.
Let Pðr; tjr0Þ be the propagator, i.e., the probability density
to be at r at time t, starting from r0 at time 0, which satisfies
the master equation [21] @

@t Pðr; tjr0Þ ¼ �rPðr; tjr0Þ, where
�r denotes the transport operator. We assume that this
transport operator has symmetric transition rates and that
the stationary probability distribution verifies Pstat ¼ 1=N.
As shown in [17,22,23], the following exact expression for
the MFPT (provided it is finite) can be derived:

hTi=N ¼ HðrTjrTÞ �HðrTjrSÞ; (1)

where Hðrjr0Þ ¼ R1
0 ðPðr; tjr0Þ � 1=NÞdt is the pseudo

Green function of the problem [24], which satisfies

��rHðrjr0Þ ¼ �1=N þ �r;r0 : (2)

A point which will prove to be important in the follow-
ing is that averaging Eq. (1) for rS covering the nearest
neighbors of rT can be shown using Eq. (2) to give back the

expression of the averaged MFPT hTi expected from Kac
formula [11]:

hTi ¼ 1=Pstat � 1 ¼ N � 1; (3)

where the mean step duration is set to 1. An explicit
derivation of this useful formula, which elegantly ex-
presses mean return times of random walks (see [25,26]
for recent applications) can be found for instance in [27].
Following [17], we consider the leading order of H for
large N, which is precisely the usual Green function G0:
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Hðrjr0Þ �G0ðrjr0Þ ¼
Z 1

0
P0ðr; tjr0Þdt; (4)

where P0 is the infinite space propagator and � denotes
mathematical equivalence for large N. When introduced in
the exact Eq. (1), this expansion gives the leading term of
the MFPT for large N, with the prescription that all points
of the domain boundary go to infinity:

hTi=N �G0ðrTjrTÞ �G0ðrTjrSÞ: (5)

It is useful to notice that this leading term of the MFPT still
satisfies the Kac formula.

We now suppose that the transport process and the
medium have length scale invariant properties, and there-
fore assume that the infinite space propagator satisfies the
standard scaling:

P0ðr; tjr0Þ / t�df=dw�

�jr� r0j
t1=dw

�
; (6)

where the fractal dimension df characterizes the accessible

volume Vr / rdf within a sphere of radius r, and the walk

dimension dw characterizes the distance r / t1=dw covered
by a random walker in a given time t. This formalism, in
particular, covers the cases of random walks on fractals
[28]. Injecting the scaling (6) in Eq. (5) then yields the
large N equivalence of the MFPT first derived in [17]:

hTi=N �
8><
>:
A� Brdw�df for dw < df;
Aþ B lnr for dw ¼ df;
Aþ Brdw�df for dw > df;

(7)

where r ¼ jrT � rSj. In these expressions the constants A
and B can be explicitly written in terms of the infinite space
propagator [17]. Equation (7) puts forward two distinct
regimes. When the exploration is not compact (dw < df),

as in the case of a Brownian particle in the 3-dimensional
space, the dependence on the starting point disappears at
large r. On the other hand, in the case of compact explo-
ration (dw � df), as for subdiffusion on fractals, the mean

FPT diverges at large r and the starting point position is
crucial.

We now go further and derive new relations involving
the unknown constants A and B, making use of the Kac
formula (3). Taking r ¼ 1 in (7) and comparing with (3)
gives

1 �
8><
>:
A� B for dw < df;
A for dw ¼ df;
Aþ B for dw > df:

(8)

In the case of noncompact exploration, one can check on
the example of a nearest neighbors random walk on the
square lattice (case where the infinite space Green function
is exactly known [10]) that the relation (8) is satisfied
numerically with a good approximation [27].

In the case of compact exploration, a second equation
can be obtained. In this case, explicit expressions of A and

B can be derived from Eq. (5) by extracting the r depen-
dence of G0 in (4) [17]:

A ¼ lim
R!1

�Z 1

0
ðP0ð0; tÞ � P0ðR; tÞÞdt� BRdw�df

�
(9)

and

B ¼
Z 1

0

du

udf=dw
��ðu�1=dwÞ: (10)

Here the scaling function is regularized according to
��ðxÞ � �ð0Þ ��ðxÞ. Assuming now that the scaling
form (6) is valid for any distance r (including r ¼ 0), we
find from Eq. (9) that A ¼ 0. Note that this prediction for A
can be also understood by taking the continuous limit of
the problem where the step length of the network tends to
zero with fixed r and fixed domain volume. As the explo-
ration is compact, the MFPT to a single point remains well
defined even in this limit, as opposed to the case of non-
compact exploration: in this continuous limit, the limit r !
0 can be safely taken and yields by definition a limit MFPT
equal to 0 [19]. Equation (7) gives in turn hTiðr ! 0Þ / A
and therefore A ¼ 0. Using Eq. (8), our results can then be
summarized as follows:

hTi=N �
8><
>:
1þ Bð1� rdw�df Þ for dw < df;
1þ B lnr for dw ¼ df;
rdw�df for dw > df:

(11)

In the case of compact exploration, the MFPT is therefore
explicitly determined under the scaling hypothesis (6).
We add that the order of magnitude of the subleading

term of this large volume expansion can be evaluated. We
start from the exact expression (1) of the MFPT and define
the correction � by Hðrjr0Þ ¼ G0ðrjr0Þ þ �ðrjr0Þ. It then
follows from (2) and from the equation ��rG0ðrjr0Þ ¼
�r;r0 satisfied by the Green function that �r�ðrjr0Þ ¼ 1=N.

Following [29], we assume further that the diffusion cur-
rent of � can be approximated by the generalized Ficks’s
law Jð�Þ ¼ Kr2�dwdr�ðrÞ, where � depends only on r ¼
jr� r0j in the large volume limit and dr is the deriva-
tive with respect to r. Taking the divergence of this
current then gives the transport operator �r�ðrÞ ¼
ðK=rdf�1Þdrðrdf�dwþ1dr�ðrÞÞ, which finally yields �ðrÞ ¼
rdw=ðdfdwKNÞ. This equation indicates that the subleading
term �ðrÞ of the large N expansion (7) of hTi=N is of order
rdw=N.
We now validate numerically the zero constant predic-

tion (11) on representative examples of compact explora-
tion using exact enumeration methods [28].
Sierpinsky gasket.—The Sierpinsky gasket is a standard

example of deterministic fractal (see Fig. 1). We consider
triangular gaskets of finite order, and make use of the
chemical distance, that is the step length of the shortest
path between two points. The fractal dimension of a trian-
gular gasket is then given by df ¼ ln3= ln2 [28], and we

are interested in a nearest neighbors random walker on this
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structure. The determination of first-passage quantities on
Sierpinsky gaskets has motivated a considerable amount of
works, which have been mostly limited to either exit times
[12,13] or averages of MFPTs over the starting point [15].
Our approach actually allows for an explicit determination
of the MFPT to a given target point keeping track of the
source or target distance r.

The propagator of the random walk on a Sierpinsky
gasket is known to be self-similar after averaging over all
pairs of points [30] separated by a distance r, leading to a
walk dimension dw ¼ ln5= ln2 (the exploration is therefore
compact). Our approach is hence applicable in this case
and following (11) we expect:

hTi � Nrlnð5=3Þ= ln2: (12)

This zero constant prediction has been validated by nu-
merical simulations (see Fig. 2) for gaskets of various
sizes, and proves to be very accurate even for small system
sizes.

T graph.—Along the same line, our approach applies to
the T graph which is another example of deterministic
fractal (see Fig. 1 and [9,16] for definition) where explo-
ration is compact (df ¼ ln3= ln2 and dw ¼ ln6= ln2).

Figure 2 shows an excellent agreement between the zero
constant prediction and numerical simulations.

Critical percolation cluster.—Critical percolation clus-
ters constitute a representative example of random fractals
[28,31,32]. Here we consider the case of bond percolation,
where the bonds connecting the sites of a regular lattice of
the d-dimensional space are present with probability p (see
Fig. 1). When p ¼ pc, an infinite cluster of bonds, char-
acterized by its fractal dimension df, appears.

We use here the chemical distance as above and consider
a nearest neighbor random walk on such critical percola-
tion cluster, with the so-called ‘‘blind ant’’ dynamics [10]:
on arrival at a given site s, the walker attempts to move to
one of the adjacent sites on the original lattice with equal
probability, and remains at site s if the corresponding link
does not exist. As opposed to the previous case, the mean
step duration is therefore 2dh1=ki, where h1=ki is the

average of the inverse of the connectivity over all points
of the cluster.
In chemical space, the propagator is known to be self-

averaging and to verify the scaling (6) [32]. Our approach
is therefore applicable and expression (11) can be safely
averaged over the disorder, leading to the following zero
constant prediction for the disordered average MFPT:
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FIG. 2 (color online). Random walks on deterministic fractals
of various orders: (a) Sierpinsky gasket and (b) T graph.
Numerical simulations (symbols) of the MFPT rescaled by the
system size N and averaged over all source or target pairs
separated by a given distance r are plotted as functions of r.
The zero constant prediction (12) is given by the plain line.

FIG. 1 (color online). Examples of bounded fractal domains. The random walker starts from S and reaches T. (a) Sierpinsky gasket
(here of order 5). (b) T graph (here of order 3). (c) 2-dimensional critical percolation cluster (case of bond percolation on a square
lattice) in a bounded domain.
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hTi � 2dh1=kiNrdw�df ; (13)

where df � 1:94, and dw � 2:93 [32] and the mean step

duration is 2dh1=ki � 3:1 (numerical value) on the ex-
ample of the 3-dimensional cubic lattice. Figure 3 shows
that the simulations fit very well this explicit formula even
for systems of small sizes.

To conclude, we have proposed a general theoretical
framework which provides a zero constant determination
of MFPTs for random walks in bounded domains in the
case of compact exploration. This approach leads to an
explicit solution of long standing problems, namely, the
determination of the MFPT for emblematic models of
transport, such as diffusion on deterministic and random
fractals. Following [18], this explicit determination of
MFPTs can be generalized to obtain zero constant expres-
sions of other relevant first-passage observables, such as
occupation times and splitting probabilities.
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FIG. 3 (color online). Numerical simulation of MFPTs for
random walks on 3-dimensional critical percolation clusters
embedded in domains with reflecting boundary. For each size
of the confining domain, the MFPT, normalized by the number
of sites N, is averaged both over the different target and starting
points separated by the corresponding chemical distance, and
over percolation clusters. The black plain curve corresponds to
the zero constant prediction (13) with dw � df ’ 0:98. The

zoom (inset) shows that the Kac formula hTi=N � 2dh1=ki �
3:1 is verified for r ¼ 1.
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