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We describe a quantum algorithm that solves combinatorial optimization problems by quantum

simulation of a classical simulated annealing process. Our algorithm exploits quantum walks and the

quantum Zeno effect induced by evolution randomization. It requires order 1=
ffiffiffiffi
�

p
steps to find an optimal

solution with bounded error probability, where � is the minimum spectral gap of the stochastic matrices

used in the classical annealing process. This is a quadratic improvement over the order 1=� steps required

by the latter.
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Combinatorial optimization problems (COPs) are im-
portant in almost every branch of science, from computer
science to statistical physics and computational biology
[1]. Each instance of a COP requires that we minimize
some objective function over a search space consisting of d
configurations. The search space may have additional
structure, such as that provided by a graph, to give a notion
of locality. Because d is typically exponential in the size of
the problem instance, finding a solution by exhaustive
search is hard in general. One can exploit the notion of
locality to find solutions more quickly, but the presence of
many nonoptimal local minima often prevents efficient
convergence to a solution. Therefore, more efficient opti-
mization strategies are desirable.

A well-known and often used general strategy for solv-
ing COPs is simulated annealing (SA) [2]. SA imitates the
process undergone by a metal that is heated to a high
temperature and then cooled slowly enough for thermal
excitations to prevent it from getting stuck in local minima
so that it ends up in one of its lowest-energy configurations.
In SA, the objective function E of the COP plays the role of
the energy, so the lowest-energy configuration is the opti-
mum. The annealing process can be simulated with a
variety of techniques. Here, we focus on discrete Markov
chain Monte Carlo (MCMC) simulations as used, for ex-
ample, in statistical physics [3]. MCMC simulations gen-
erate a stochastic sequence of configurations via a Markov
process that, in the case of SA, converges to the Gibbs
distribution at a low final temperature. More specifically,
the annealing process is determined by a choice of an
annealing schedule consisting of a finite increasing se-
quence of inverse temperatures �1 <�2 < . . .<�P, and
by an associated sequence of transition rules fM1; . . . ;MPg
consisting of stochastic matrices acting on configurations.
When the structure of the problem can be exploited by a
good choice of transition rules, the MCMC algorithm can
outperform exhaustive search.

One way to characterize the implementation complex-
ity of SA based on MCMC simulations is to count the
number of times that the transition rules must be applied
before converging to the desired final distribution within an
acceptable error. For simplicity, we consider regular an-
nealing schedules with �k ¼ ðk� 1Þ�� and choose
�� ¼ Oð�=EMÞ, where � is the minimum spectral gap
of the matricesMk and EM ¼ max�jE½��j. We assume that
E has been shifted so that E � 0. Let � be the spectral gap
of E, defined as the difference between the two smallest
values in the range of E. By adapting arguments from
Ref. [4] to the discrete-time setting, it can be shown that,
for a success probability greater than 1� �, the implemen-

tation complexity of SA is given byN SA ¼ P ¼ O½EM� �
logðd=�2Þ=��.
Ideally, N SA is small compared to the size d of the

configuration space. Since problem instance sizes are typi-
cally polylogarithmic in d, N SA ¼ O½polylogðdÞ� is con-
sidered efficient. Efficient N SA is obtained, for example,
when computing physical properties of the N-spin ferro-
magnetic Ising model in an homogeneous external field
[5]. However, inefficient N SA is obtained if the external
field is random [6], making the problem intractable due to
gaps � that are exponentially small in N. The dependence
of the complexity of MCMC on ��1 is characteristic of
Markov processes and may be unavoidable [7]. Thus, new
methods with better scaling in � are desirable.
Quantum mechanics provides new resources with which

to attack optimization problems [8,9]. Quantum computers
(QCs) can theoretically solve some problems, including
integer number factorization and unstructured search, more
efficiently than classical computers [10]. Still, whether a
QC could solve all COPs more efficiently than is possible
with classical computers is an open question. In this Letter,
we show that QCs can speed up the simulation of classical
annealing processes. We present a method for transforming
instances of MCMC-based SA into a quantum simulated
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annealing (QSA) algorithm for which the number of
times, N QSA, that the transition rules are used is

OððEM=�Þ2log2ðd=�Þ logd=ð�
ffiffiffiffi
�

p ÞÞ, a quadratic improve-
ment as a function of ��1. This improvement is most
significant for hard instances where �� 1. The depen-
dence on 1=� can be improved to polylogð1=�Þ. QSA is
based on ideas and techniques from quantum walks [11]
and the quantum Zeno effect, where the latter can be
implemented by phase estimation or by randomization of
an evolution period.

This Letter is organized as follows. First, we describe a
‘‘quantization’’ of a reversible, ergodic Markov chain in
terms of a bipartite quantum walk. This is a similarity-
transformed version of the quantumwalk used in Refs. [11]
to obtain quantum speedups in search problems. Second,
we describe how to transform an instance of SA by adapt-
ing the annealing schedule and applying the Markov chain
quantization. Finally, we analyze the complexity of QSA to
determine the speedup over SA.

Quantum Walks and Markov Chains.—Discrete-time
quantum walks were introduced as the quantum analogues
of classical random walks [12]. We focus on the bipartite
quantum walks defined in Refs. [11].

Consider a d-configuration classical system S with en-
ergies E½�� for configurations �. Consider an ergodic,
reversible Markov process on S with transition probabil-
ities pð�0j�Þ ¼ m��0 and stationary distribution ��.
Reversibility is equivalent to the detailed balance condition

��m��0 ¼ ��
0
m�0�. Let H be the quantum state space

spanned by orthonormal states j�i for configurations � of

S. In SA, �� ¼ e��E½��=Z, with Z ¼ P
�e

��E½��, is the
Gibbs distribution at some inverse temperature �. We
assume not only a classical algorithm to efficiently sample
from the distribution m��0 given �, but an efficient quan-
tum algorithm that computes the transformation defined by
j�ijoi � j�iP�0

ffiffiffiffiffiffiffiffiffiffiffi
m��0

p j�0i, with joi an efficiently pre-

parable state ofH (e.g., a computational basis state). This
transformation, which runs efficiently on arbitrary super-
positions, can be constructed from an efficient classical
algorithm that on input � computes the list of nonzero
m��0 , to high precision, where the length of the list is
polynomially bounded. This is usually available for
MCMC algorithms. (The error from finite-precision ap-
proximation of m��0 and

ffiffiffiffiffiffiffiffiffiffiffi
m��0

p
is insignificant compared

to other sources of error in both classical MCMC and our
quantum SA algorithm.)

The bipartite quantum walk is defined on the tensor
product H A �H B of two copies of H . Following [11],
we define isometries X and Y that map states of H to
states of H A �H B by

Xj�i¼X
�0

ffiffiffiffiffiffiffiffiffiffiffi
m��0

p j��0i; Yj�0i¼X
�

ffiffiffiffiffiffiffiffiffiffiffi
m�0�

p j��0i: (1)

Let D� be the diagonal matrix with entries �� on the
diagonal. Let M be the matrix with entries M�0� ¼ m��0 .

From the detailed balance condition, XyY ¼ D1=2
� MD�1=2

�

is symmetric. It follows that XyY and M have the same
eigenvalues �0 ¼ 1> �1 � . . . � �d�1 � 0. Let j�ji be
the �j eigenstate of XyY. Then, j�0i ¼ P

�

ffiffiffiffiffiffiffi
��

p j�i,
which upon measurement in the basis j�i has the same
probability distribution as the stationary distribution of the
Markov process.
Define unitary operators UX and UY by

UXj�ijoi � Xj�i; UYjoij�i � Yj�i; (2)

with arbitrary action on other states. Let P1 and P2 be the
projectors onto the subspaces spanned by fj�ijoig� and

fUy
XUYjoij�ig�, respectively. The reflection operators

through Pi are defined by Ri ¼ 2Pi � 1. A step of the
bipartite quantum walk W based on M is given by W ¼
R2R1. This walk is related to the one used in Ref. [11] by a
unitary, but ��-dependent, similarity transformation,
which helps avoid amplitude leakage when W changes in
QSA.
We now relate the spectra of the quantum walk W and

the Markov chainM [11]. Define phases ’j ¼ arccos�j so

that XyYj�ji ¼ cos’jj�ji. The spectral gap of M is � ¼
1� �1 � ð’1Þ2=2. From Eq. (2),

P1U
y
XUYjoij�ji ¼ cos’jj�jijoi (3)

P2j�jijoi ¼ cos’jU
y
XUYjoij�ji; (4)

so W preserves the (at most) two-dimensional subspace

spanned by fj�jijoi; Uy
XUYjoij�jig. On the Bloch sphere

defined by states in this subspace, for j � 1, W acts as a
4’j rotation around an axis perpendicular to the defining

states [13]. Thus, the eigenphases ofW in this subspace are
	2’j. The eigenphase-0 states are either the quantum

stationary state j 0i ¼ j�0ijoi or orthogonal to both Pi.
The goal is to prepare j 0i so that we can sample from the
stationary distribution of M by measuring the first system
[14].

Note that R2 ¼ Uy
XUYSABR1SABU

y
YUX, with SAB the

swap operation. Therefore, W can be implemented as a
sequence of quantum steps whose complexity is related to
that of the MCMC steps using M, given our assumptions.
For asymptotic comparison, it therefore suffices to com-
pare the number of uses of W in the quantum algorithm to
the number of uses of M in the classical algorithm.
Quantum simulated annealing.—We assume that for any

� � 0, there is a transition matrix M� satisfying the as-

sumptions of the previous section and with stationary

distribution ��� ¼ e��E½��=Z. Like SA, QSA is based on

an annealing schedule that we choose to consist of equally
spaced inverse temperatures �k ¼ ðk� 1Þ�� for k ¼
1; . . . ; Q. Let Wk be the quantum walk step operator for
M�k , j k0i its quantum stationary state (quantum Gibbs

state for �k), and ’1;k its phase gap. The goal of QSA is

to sequentially prepare j kþ1
0 i from j k0i by means of an

approximate projective measurement onto j kþ1
0 i [15]
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realized by a simulated measurement onto the eigenbasis
of Wkþ1. The uniform superposition j 1

0i can be prepared

efficiently (e.g., for n qubits it is done by applying n
Hadamard gates). If the states j k0i change slowly enough,

the state j Q0 i can be obtained with high probability of

success, due to a version of the quantum Zeno effect. If �Q
is sufficiently large, j Q0 i is a good approximation of a

uniform superposition of the ground configurations of S so
that we can obtain such a ground configuration with high
probability by measurement. The complexity of QSA is
dominated by the complexity of the simulated measure-
ments, for which we give two strategies, one based on the
phase estimation algorithm (PEA) and the other on
randomized applications of Wk. Both strategies’ complex-
ities are dominated by 1=’1;k. The quadratic quantum

speedup is due to the quadratic increase of ’1;k over the

eigenvalue gap of Mk.
In the following, we describe the implementation of the

projections for the Zeno effect in QSA. The use of PEA is
depicted in Fig. 1(a). QSA does not need to use the result of
the phase estimation, though the result could be used to
terminate and restart the procedure if the measurement
outcome is not j0i�p. The decoherence it induces in the
eigenbasis of Wkþ1 suffices to achieve the required Zeno
effect. Thus, the effect of the PEA on H A �H B is
equivalent to the one obtained by the action of r Wkþ1’s,
with r chosen uniformly at random from 0 to 2p � 1 [Fig. 1
(b)]. To exponentially reduce the error due to remaining
coherences between j kþ1

0 i and orthogonal states, we re-

peat the random process s times, resulting in a total action

of W

P
s
q¼1

rq

kþ1 with 0 � rq � 2p � 1 independently random.

To prevent excessive amplitude leakage into undesirable 0-
eigenphase eigenstates of Wk, we decohere the second
register after each randomization step. That is, we measure
H B in the computational basis and discard the result. The
total complexity of QSA is given by OðQ2psÞ walk steps.
We now choose Q, p, and s to ensure sufficiently high

probability of success. Let 	k denote the state after the kth
randomization and decoherence step. We have 	1¼
j 1

0ih 1
0j. Assume that jh kþ1

0 j k0ij2�1�
2 for all k. By
expanding to lowest order in ��, one can verify that 
 ¼
Oð��EMÞ. We show by induction that for 2p>23�=

ffiffiffiffiffiffi
2�

p
and s � 1þ log2ð2kÞ=2 ¼ O½logðkÞ�, h k0j	kj k0i�1�
2k
2. Thus, if
2<�=ð4QÞ, 	Q is the quantum Gibbs state
for � ¼ Q�� with error probability at most �=2. We can
write 	k¼ð1��Þj k0ih k0jþ�kðj k0ih k?jþH:c:Þþ�	?,
where j k?i is a unit state orthogonal to j k0i, 	? is a den-

sity matrix with support orthogonal to j k0i, and � � 2k
2.

To make the induction argument possible, we add the in-
duction hypothesis �k < 
=2. The induction hypotheses
apply to 	1 by definition. Note that h kþ1

0 j	kþ1j kþ1
0 i ¼

h kþ1
0 j	kj kþ1

0 i. We can estimate h kþ1
0 j	kj kþ1

0 i �
ð1 � �Þjh kþ1

0 j k0ij2 � 2�kjh kþ1
0 j k0ijjh kþ1

0 j k?ij þ
h kþ1

0 j	?j kþ1i � ð1 � 2k
2Þð1 � 
2Þ � 2�k
 �
1 � 2ðk þ 1Þ
2. This establishes the main induction
hypothesis for kþ 1. Before the randomization step, the
density matrix’s transition between j kþ1

0 i and the orthogo-
nal subspace can be written in the form �0ðj kþ1

0 ih�?j þ
H:c:Þ with unit state j�?i orthogonal to j kþ1

0 i and the

other 0-eigenphase eigenstates ofWkþ1, because the deco-
herence step ensures that the support of P1 is preserved by
the operator 	k. The estimate on h kþ1

0 j	kj kþ1
0 i implies

that �0 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkþ 1Þp


 by positivity of 	k [16]. Because
j kþ1

0 i is stabilized by Wkþ1, the transition is transformed

by randomization to �00ðh kþ1
0 j�0

?i þ H:c:Þ with

�00j�0
?i ¼ �0ð 12p

P
2p�1
r¼0 Wr

kþ1Þsj�?i. In the eigenbasis of

Wkþ1, the entries of j�?i are multiplied by terms with
absolute values ð 12p j

P
2p�1
r¼0 eir2’jÞs � ð 1

2p�1j1�ei2’jÞs <
ð �
2p�3j’jÞs < 2�s, since the relevant eigenphases 2’ satisfy

�=2 � j’j � ffiffiffiffiffiffi
2�

p
. Thus, the choice s ¼ 1þ log2½2ðkþ

1Þ�=2 ensures that �00 <
=2. Because the decoherence
step preserves j kþ1

0 i, we have �kþ1 � �00 <
=2. This
completes the induction step of the proof. We summarize
the QSA in Fig. 2.
To determine the order of the number of quantum steps

N QSA required by QSA, let �f be the desired final inverse

temperature so that �� ¼ �f=Q. Choose Q to be a suffi-

ciently large multiple of �2
fE

2
m=�. For optimization, we let

�f ¼ ln½d=ð2�Þ�=� ¼ O½logðd=�Þ=��. According to the

bounds at the beginning of the previous paragraph, this
ensures that after measuring the final state, the probability
of finding a nonoptimal configuration is at most �, with a
contribution of �=2 from the probability of being orthogo-

nal to j Q0 i and �=2 from the Gibbs distribution’s proba-

FIG. 1. (a) Phase estimation algorithm. The top p-qubit regis-
ter encodes a p-bit approximation to an eigenphase of Wkþ1 on
readout, and is initialized with Hadamard gates to an equal
superposition state. The second register’s states are in H A �
H B. A sequence of 2p � 1 controlled Wkþ1 operations is
applied, and the first register is measured after an inverse
quantum Fourier transform. If the measurement outcome is
j0i�p, the second register is approximately projected onto a 0-
phase eigenstate of Wkþ1. (b) Randomization procedure. If the
PEA’s outcome is ignored, the overall effect on H A �H B is
equivalent to the one induced by initializing a set of p bits (first
register) in a random state r, with r 2 f0; . . . ; 2p � 1g, and by
acting on H A �H B with ðWkþ1Þr. Here, double vertical lines
indicate classical control.
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bility of not being optimal. Because 2p ¼ Oð1= ffiffiffiffi
�

p Þ and
s ¼ O½logðQÞ�, we find that N QSA ¼ O½Q logðQÞ= ffiffiffiffi

�
p �

with Q ¼ Oð�2
fE

2
m=�Þ and �f ¼ O½logðd=�Þ=��. If we

anticipate that Q> d, we can just search every configura-
tion classically to find the optima, so we can bound
logðQÞ � logðdÞ to simplify

N QSA ¼ O
��
EM
�

�
2 log2ðd=�Þ logd

�
ffiffiffiffi
�

p
�
: (5)

The dependence of N QSA on 1=� can be improved to

polylogð1=�Þ by repetition of QSA with an initial target
error � ¼ 1=2 in Eq. (5). For optimization, it suffices to
repeat QSAO½logð�Þ�many times. A different approach to
prepare the desired stationary state with high probability of
success is to apply a high-confidence version of the PEA

[13] at the end of QSA to project onto j Q0 i. If the projec-
tion fails, the algorithm is repeated.

Although the dependence of N QSA on EM=� is worse

than the one appearing in classical SA, it is worth noting
that unlike the inverse spectral gap 1=�, in many important
applications, this parameter is bounded by a constant or a
polynomial in instance size.

Conclusions.—We presented a quantum algorithm based
on a ‘‘quantization’’ of simulated annealing algorithms
implemented with MCMC methods. This quantum simu-
lated annealing (QSA) algorithm forces the state to closely
follow a superposition with amplitudes derived from finite-
temperature Gibbs distributions. This is accomplished by
either an explicit measurement using phase estimation with
quantum walk operators, or by decoherence using random
applications of these operators. QSA can be used both for
combinatorial optimization and for sampling from a Gibbs
distribution for statistical physics applications. In contrast
to SA, which scales with Oð1=�Þ, where � is the minimal
spectral gap of the transition matrices, QSA scales with

Oð1= ffiffiffiffi
�

p Þ. Although in general the QSA does not yield a
polynomial-resource algorithm, it reduces required resour-
ces by an asymptotic exponential factor for the ubiquitous
hard cases, where the gap becomes exponentially small in
the problem size.
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