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We study electron-positron pair creation from the Dirac vacuum induced by a strong and slowly varying

electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic

field (dynamical pair creation). In the subcritical regime where both mechanisms separately are strongly

suppressed, their combined impact yields a pair creation rate which is dramatically enhanced. Intuitively

speaking, the strong electric field lowers the threshold for dynamical particle creation—or, alternatively,

the fast electromagnetic field generates additional seeds for the Schwinger mechanism. These findings

could be relevant for planned ultrahigh intensity lasers.
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As first realized by Dirac [1], a consistent relativistic
quantum description of electrons necessarily involves
negative energy levels, which—in the Dirac-sea pic-
ture—are filled up in the vacuum state. This entails the
striking possibility of pulling an electron out of the vacuum
by means of some external influence, such as a (classical)
electromagnetic field [2], where the remaining hole in the
Dirac sea is then associated with a positron. Of course, to
create such an electron-positron pair out of the vacuum,
one has to overcome the energy gap of 2mc2 between the
filled and the empty levels. There are basically two main
mechanisms for doing so: In a strong electric field E over a
sufficiently long distance L, ‘‘virtual’’ electron-positron
pair fluctuations may gain this energy when qEL �
2mc2. This pair creation process is called the Schwinger
mechanism [3,4] and can be understood as tunneling
through the classically forbidden region (energy gap).
Thus it is suppressed exponentially Oð expð��ES=EÞÞ
for weak fields E, where ES ¼ m2c3=ð@qÞ is the
Schwinger critical field. For E ’ ES, the work done by
separating the electron-positron pair over a Compton
wavelength is of the order of the energy gap 2mc2.
Alternatively, a classical time-dependent electromagnetic
field will also create electron-positron pairs in general
(dynamical pair creation). However, if the frequency !
of the external field is not large enough, @!< 2mc2, these
nonadiabatic corrections correspond to higher-order (i.e.,
multiphoton) processes and are also suppressed exponen-
tially exp½�Oð1=!Þ� for small ! [5]. These pair-
production processes are fundamental predictions of quan-
tum electrodynamics, but only the multiphoton production
process has so far been observed experimentally: the posi-
tron data taken at the SLAC E-144 experiment have con-
vincingly been explained by n-photon production with
n ’ 5 [6]. However, a verification of the Schwinger mecha-

nism has still remained an experimental challenge [7].
Since the Schwinger mechanism is nonperturbative in the
field, its discovery would help in the exploration of the
nonperturbative realm of quantum field theory in a con-
trolled fashion. Here, we propose a new mechanism which
can help to overcome the strong exponential suppression.
The basic idea is similar in spirit to ideas in the study of
atomic physics in strong fields, where new experimental
and theoretical results show that controlled engineering of
special electric field pulse shapes can enhance certain
interesting physical processes, such as high-harmonic gen-
eration and above threshold ionization (for reviews, see
[8]).
Many previous theoretical studies of pair production

[5,9–12] have been motivated by the seminal work of
Keldysh [13] on atomic ionization in time-dependent elec-
tric fields; in particular, the crossover between the two
main mechanisms of pair creation due to strong constant
electric fields and due to those with spatial or temporal
variations has been of interest. It turns out that spatial
variations tend to diminish the pair creation rate [10,12],
whereas a time dependence typically increases the effect
[11,14]. However, a realistic experimental situation is usu-
ally far more complex and may involve various frequency
and amplitude scales over a wide range. This motivates us
to study electron-positron pair creation in the presence of a
strong and slow electric field plus weak and fast electro-
magnetic wiggles. We assume that the slow electric field E
is strong but still far below the Schwinger limit ES, and that
the frequency of the weak electromagnetic wiggles is
smaller than twice the electron mass. As explained before,
the pair creation rate of each effect separately is strongly
suppressed in this case. As we shall demonstrate below,
however, their combined impact may be much stronger,
i.e., yield an enhanced pair creation rate. These findings
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could be experimentally relevant in view of the next-
generation light sources [15] aiming at approaching the
Schwinger limit via high-harmonic focusing, which typi-
cally generates a high-frequency tail.

For a first estimate, let us treat the strong and slow
electric field adiabatically and nonperturbatively (as our

Ĥ0 problem) and the weak and fast electromagnetic wig-
gles nonadiabatically and perturbatively. In terms of the

field operator �̂ and the Dirac matrices � and �, the total

Hamiltonian density reads (@ ¼ c ¼ 1)

Ĥ ¼ �̂yði� � rþm�þ VÞ�̂þ q�̂y� �Aðt; rÞ�̂;

(1)

where VðrÞ ¼ qA0 encodes the (approximately static) elec-
tric field and Aðt; rÞ is the vector potential of the fast
electromagnetic wiggles (scale separation). After splitting

ĤðtÞ ¼ Ĥ0 þ qĤ1ðtÞ, the Ĥ0 problem can be diagonalized

via the usual normal-mode expansion �̂ðt; rÞ ¼P
IâIuIðrÞe�i!It þ b̂yI vIðrÞeþi!It, where the positive or

negative energy spinor solutions uIðrÞ and vIðrÞ depend
on spin� and wave number k, which are combined into the
index I ¼ f�;kg. The electron (positron) creation (annihi-

lation) operators âI; â
y
I (b̂I; b̂

y
I ) are time independent. Now,

inserting this expansion into Ĥ1ðtÞ, the pair creation am-
plitude AIJ ¼ heþI e�J jouti can be calculated in first-order
perturbation theory

A IJ ¼ q
Z

d4xuyI ðrÞ� �Aðt; rÞvJðrÞei!Itþi!Jt: (2)

Within the present estimate, we are primarily interested in
the size of the exponent governing the exponential sup-
pression of the above amplitude. Therefore, we study a
(1þ 1)-dimensional toy model, which should reproduce
the exponent correctly, but disregard the subleading pre-
factor. Let us consider a constant electric field E over an
interval of length L with vanishing field outside; see Fig. 1.
For simplicity, we assume qEL * 2m; i.e., we are just
above the threshold for the Schwinger effect. In terms of
the Klein paradox [16] language, the case lies near the
border between the intermediate and strong potential
regime.

For modes I, J whose frequency sum !I þ!J corre-
sponds to the typical frequency of the perturbation Aðt; rÞ,
the exponential suppression of the pair creation amplitude
(2) is basically determined by the spatial overlap of the

modes uyI ðrÞ and vJðrÞ. Assuming !I ¼ !J ¼ ! for sim-
plicity (other distributions only induce a shift in x but lead
to the same result as long as !I þ!J ¼ 2!), the spinor
uIðrÞ describes electron modes which are incident from the
right and totally reflected (due to !<m) by the strong
field E, whereas vJðrÞ corresponds to positron modes
which are incident from the left and also totally reflected.
The classical turning points are given by x� ¼
�ðm�!Þ=ðqEÞ; see Fig. 1. As the electric field E is

assumed to lie far below the Schwinger limit, we may
employ the WKB approximation and estimate the expo-
nential suppression by the integral of the eikonal between
the classical turning points

Z xþ

x�
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � ðqEx�!Þ2

q
¼ m2

4qE
f

�
!

m

�
; (3)

with fð�Þ ¼ �þ 2 arcsinð1� 2�Þ þ 4
ffiffiffiffi
�

p ð1� 2�Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
, which can be approximated by fð�Þ � 2�ð1�

�Þ in the relevant interval � 2 ½0; 1�. In the limit � ¼ 0,
we exactly recover Schwinger’s exponential factor
expf��ES=Eg for the pair creation probability in a static
field. For �> 0, however, the exponent is reduced.
Intuitively speaking, the particles do not have to tunnel
all the way from �L=2 to þL=2 because the frequency !
helps them to penetrate the strong field region up to x�. In a
dual picture, the particles tunnel through part of the gap,
until they can be excited by frequency !. At � ¼ 1=2, we
get exactly half the exponent, and hence the pair creation
rate is drastically enhanced expf��ES=ð2EÞg. Note that,
without the strong electric background field E, a single
photon with ! ¼ m=2 would not have enough energy to
create an electron-positron pair. Below threshold !<m,
pair production requires multiphoton processes which oc-
cur at higher orders in the above expansion scheme. For
� ¼ 1, the exponent in Eq. (3) vanishes as expected, since
the electromagnetic wiggles have enough energy for pair
creation ! ¼ m.
The above approach based on the scenario in Fig. 1 has

the advantage of allowing arbitrary wigglesAðt; rÞ, but has
the drawback that multiphoton processes require high-
order calculations. Also, realistic backgrounds Eðt; xÞ are
difficult to handle even though the tunneling exponent is
expected to be universal for slowly varying fields. Time-
dependent backgrounds as well as multiphoton physics can
be dealt with by the worldline instanton technique [14]

−ω
+ω+m

−m

−L/2 +L/2x− x=0 x+

x

x

FIG. 1. Sketch (not to scale) of the level structure (top) and the
mode functions uyI and vJ (bottom). The upper and lower surface

of the Dirac sea at �m are denoted by solid lines, which are
distorted by the electric field E in the interval �L=2< x<
þL=2 with qEL ¼ 2m (top). The horizontal dotted lines at �!
represent the electron or positron levels uyI and vJ with the

classical turning points at x�.
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which we apply to the following specific example: we
consider a strong and slow electric field pulse superim-
posed by a weak and fast pulse, both spatially homoge-
neous,

E ðtÞ ¼ E

cosh2ð�tÞ ez þ
"

cosh2ð!tÞ ez (4)

with ES � E � " > 0 and m � ! � �> 0. With only
one such pulse (say " ¼ 0), the corresponding pair creation
rate can be computed analytically [10]. For the superim-
posed dual-pulse form in (4), we can compute the pair
creation rate semiclassically using an analytic continuation
to Euclidean time x4 via

A3ðx4Þ ¼ �i
E

�
tanð�x4Þ � i

"

!
tanð!x4Þ; (5)

with the tunneling exponent being related to the action of
the worldline instanton [17]. Starting with the worldline
representation of the path integral, we may use the electron
mass m as a large parameter (assuming qE 	 m2 and
! 	 m) for the saddle point approximation. The saddle
points corresponding to the tunneling events are worldline
instantons x� ¼ ½0; 0; x3ð�Þ; x4ð�Þ� which are closed loops

in Euclidean space-time satisfying the equation of motion

�
dx4
d�

�
2 þ q2

�
E tanð�x4Þ

m�
þ " tanð!x4Þ

m!

�
2 ¼ 1; (6)

where d�2 ¼ dx23 þ dx24 is the proper time. This equation

describes the classical motion of a particle in a potential.
For small ", the second term tanð!x4Þ acts as an infinitely
high rectangular well potential and just reflects instanton
trajectories x4ð�Þ at the walls !x4 ¼ ��=2. Between the
walls, we have an approximately harmonic oscillation due
to � 	 ! and thus tanð�x4Þ � �x4. The structure of the
solution x4ð�Þ depends on the combined Keldysh adiaba-
ticity parameter

� ¼ m!

qE
: (7)

Note that the relevant Keldysh parameter in this multiscale
problem is formed out of the dominant frequency ! of the
fast pulse on the one hand and the dominant field strength
E of the slow pulse on the other hand. For small � 	 1, we
approach the pure Schwinger limit, whereas large � do not
correspond to a pure multiphoton regime [5] as measured
in the SLAC E-144 experiment [6]; large � still involve
both multiphotons of frequency ! as well as a nonpertur-
bative dependence on E.

For small Keldysh parameters � < �=2, the instanton
trajectories do not reach the walls and reflection does not
occur; i.e., the tanð!x4Þ term has no impact. In this case,
the weak pulse is too slow to create pairs significantly, and
we essentially reproduce Schwinger’s result. Beyond this
threshold, �> �=2, however, the instanton trajectories
x4ð�Þ change due to reflection at the walls, and the instan-

ton action becomes modified

A inst ¼ m
I

d�

�
dx4
d�

�
2 ¼ 4m

Z �


0
d�

�
dx4
d�

�
2

(8)

with �
 ¼ ðm=½qE�Þ arcsinð�=½2��Þ being the reflection
points. Consequently, we obtain (for � � �=2)

A inst � m2

qE

�
2 arcsin

�
�

2�

�
þ �

2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 � �2

q �
: (9)

At the threshold, � ¼ �=2, we reproduce the Schwinger
value Ainst ¼ �m2=ðqEÞ � 1, as one would expect.
Above the threshold, � > �=2, the instanton action Ainst

decreases significantly. For example, for � ¼ �, it is re-
duced by about 40%. For � ! 1, it decays as 1=� in
agreement with the expected multiphoton behavior [5].
For larger ", the threshold behavior becomes smoother;
see Fig. 2. Since the pair creation probability, determined
by the imaginary part of the effective action �½A�� ¼
�i lnhinjouti, depends exponentially on the instanton ac-
tion, i.e., the saddle point value,

Im ð�½A��Þ � expf�Ainstg ��1; (10)

such a reduction ofAinst implies a drastic enhancement of
the pair creation probability Imð�½A��Þ; e.g., a reduction of
40% in the exponent could make the difference between a
suppression of 10�10 and 10�6, which could mean a few
electron-positron pairs per day, instead of one per year. Of
course, one could also reduce Ainst by a factor of 2 via
doubling the field E. However, such strong fields are at the
edge of present experimental capabilities and focusing two
ultrahigh intensity pulses into the same space-time region
is much harder than superimposing the strong pulse and a

1 2 3 4 5
γ

2.0

2.5

3.0

inst

FIG. 2 (color online). Plots of the instanton action [in units of
m2=ðqEÞ] for the electric field in (4), computed using the world-
line instanton method, and plotted as a function of the combined
Keldysh parameter � defined in (7). The upper (red) dots
correspond to ! ¼ 100 � and E ¼ 100", while the lower
(blue) dots correspond to ! ¼ 10 � and E ¼ 10". The solid
lines show the Schwinger value of �, estimated in the text to be
valid for � < �=2, and the expression (9), estimated in the text
to be valid for � > �=2. The numerical results agree very well
with these estimates in the relevant limit where E � " and ! �
�.
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weak high-frequency pulse. Similarly, increasing the char-
acteristic frequency of the ultrahigh intensity pulse is much
harder than just adding a weaker field of high frequency. In
fact, the envisioned generation mechanism (high-harmonic
focusing) for the ultrahigh intensity pulses typically indu-
ces a high-frequency tail automatically (see below).

Because of the rather general nature of the arguments
used above, they are not restricted to the specific pulse in
Eq. (4); similar results are obtained for other localized
pulse shapes [e.g., ð!x4Þ2mþ1=ð1� ½!x4�2nÞl with
l; n;m 2 N instead of tanð!x4Þ] which might capture
more features of a realistic laser pulse. In order to under-
stand the general result, it might be helpful to consider the
following picture: The strong and slow pulse deforms the
fermionic levels almost adiabatically. As a result, the ex-
pectation value of the free electron and positron number
operator (valid for A� ¼ 0) would scale with E2=m4 (plus

adiabatic corrections such as _E=m2) and thus give a rather
large result. However, this large number does not count
real electrons or positrons (e.g., they do not annihilate) but
mostly the instantaneous deformation of the ground state.
The number of real electron-positron pairs, left over after
the pulse, scales exponentially with exp½�Oð1=EÞ�, i.e.,
nonperturbatively in E [18]. On the other hand, the tem-
porary deformation of levels during the strong pulse can be
exploited by the small wiggles, which can turn the de-
formed ‘‘virtual’’ pairs into real electron-positron pairs.

The dramatic enhancement of the exponentially small
pair creation probability should be relevant for the present
experimental efforts aimed at the generation of light
sources approaching the Schwinger limit [15]. One of the
main envisioned mechanisms for the final amplification
stage is coherent high-harmonic focusing: Let us imagine
sending a laser pulse of ultrahigh intensity onto a curved
metal surface. For a very high intensity, the Keldysh pa-
rameter of the laser is very small and hence electrons in the
metal start to oscillate coherently and ultrarelativistically.
Thereby, they effectively form a relativistically flying mir-
ror, which reflects the incident light with a large Doppler
shift and thereby generates high harmonics up to large
order n. According to [19], the spectrum of these high
harmonics is universal and the intensity of the nth har-

monic scales with n�8=3 up to some cutoff, which is
proportional to the third power of the Lorentz boost factor
of the mirror and thus depends on the incident laser
intensity.

For example, an incident optical laser intensity of order
1022 W=cm2 reachable in the near future would correspond
to n ¼ Oð105Þ, which may range up to a significant frac-
tion of the electron mass [20]. Finally, the curvature of the
metal surface allows us to focus the high harmonics into a
small space-time region, such that the spatially and tem-
porally compressed intensity might approach the
Schwinger limit. In this scenario, the highest harmonics
(near the cutoff) will not contribute to the peak intensity

significantly—but they still can enhance the pair creation
probability drastically (compared to what one would ex-
pect from the Schwinger mechanism alone).
R. S. and H.G. acknowledge support by the DFG under

Grants No. SCHU 1557/1-2,3 (Emmy-Noether program),
No. GI 328/5-1 (Heisenberg program), and the SFB-TR18.
G.D. thanks the U.S. DOE for support through grant DE-
FG02-92ER40716.

[1] P. A.M. Dirac, Proc. R. Soc. A 117, 610 (1928); 118, 351
(1928); 126, 360 (1930).

[2] F. Sauter, Z. Phys. 69, 742 (1931); 73, 547 (1931).
[3] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936); V.

Weisskopf, K. Dan. Vidensk. Selsk., Mat.-Fys. Medd.
XIV, 6 (1936).

[4] J. Schwinger, Phys. Rev. 82, 664 (1951).
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