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Quantum field theory with an external background can be considered as a consistent model only if

backreaction is relatively small with respect to the background. To find the corresponding consistency

restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy

density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T.

Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that

the leading contributions to the energy are due to the creation of particles by the electric field. Assuming

that these contributions are small in comparison with the energy density of the electric background, we

establish the above-mentioned restrictions, which determine, in fact, the time scales from above of

depletion of an electric field due to the backreaction.
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It is well known that QFT in an external background
provides an efficient model for the study of quantum
processes in those cases when some part of a quantized
field is strong enough to be treated as a classical one. For
example, QED with an external electromagnetic back-
ground formally arises from extending the QED
Lagrangian by the interaction of the matter current with a
given external electromagnetic field Aext

� , which is not

quantized. This is naturally implied as a certain approxi-
mation. The study of some problems in QED and QCD
with superstrong external backgrounds and their applica-
tions to astrophysics and condensed matter (to graphene
physics) has once again raised the question of a consis-
tency of such theories. Obviously, the question must be
answered, first of all, in the case of a constant external field.
Calculations that have an immediate relation to the above-
mentioned problem have first been carried out by
Heisenberg and Euler in the case of QED with constant
parallel electric E and magnetic B fields, see [1]. They
computed the change of the vacuum energy of spinning
particles for arbitrary B and a weak electric field E�
Ec ¼ m2=e (" ¼ c ¼ 1) which is unable to effectively
create pairs from vacuum. They interpreted this change
as a change of the energy of the external field itself and, at
the same time, as a change of the Maxwell Lagrangian

Lð0Þ ¼ ðE2 � B2Þ=8� by a certain additionLð1Þ. The limit-
ing case of a strong magnetic field (B� m2=e, E ¼ 0)
yields

L ð1Þ � �
�
�

3�
ln
eB

m2

�
Lð0Þ; (1)

where � ¼ e2 is the fine-structure constant. This result is
in agreement with more advanced calculations carried out
by Ritus [2], who arrived at the conclusion that the loop
expansion makes sense only for the magnetic fields re-

stricted by the condition B� Fmax,

Fmax ¼ m2

e
exp

�
3�

�

�
� m2

e
10560:

Shabad and Usov [3] have recently established a more
rigid limitation for the maximal admissible strength of
magnetic field, B� 1028m2=e, having analyzed the struc-
ture of QED of vacuum in this field, taking into account the
interaction of virtual electron-positron pairs.

The addition Lð1Þ has been generalized in a certain way
to an arbitrary constant field (to arbitrary E) by Schwinger
[5] and is now called the Heisenberg-Euler Lagrangian
(HEL); for a review, see [4]. However, its physical meaning
for a strong electric field is not completely clear. In the
general case, the HEL is complex valued, its imaginary
part determines the probability of pair-creation, as has been
confirmed by independent calculations [6,7]. Considering
the in-out vacuum current, Schwinger has made it possible
to obtain an elegant expression for his effective Lagrangian
in terms of the causal (Feynman’s) Green function.
Nevertheless, such an effective Lagrangian is not related
to the problem of mean values, in particular, it does not
reproduce the change of the vacuum energy of spinning
particles for arbitrary E; the latter problem has to be
formulated independently as a mean-value problem, and
is expressed via noncausal Green’s functions; see [7].
In a strong electric field (E� m2=e, B ¼ 0), the real-

valued part of HEL, describing the effects of vacuum
polarization, is given by the right-hand side of (1), where
B is replaced by E. From this expression one can extract

the negative-valued additive correction Eð1Þ ¼ ReLð1Þ to

the classical Maxwell density of energy, Eð0Þ ¼ Lð0Þ. On
these grounds, in [8] it was suggested that Fmax should be
also a limiting value of electric field. It turns out that

ImLð1Þ � E2, which can be interpreted as an evidences
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that the vacuum instability is less than the vacuum polar-
ization. This is not true since the vacuum instability is a
nonlocal effect, being directly dependent on the electric
field duration.

In our opinion, the most adequate object, whose analysis
can answer these questions, is the mean-energy density of
matter for large values of strength and duration of the
electric field, computed with respect to various initial states
when the initial state is vacuum, and is in thermal equilib-
rium. A detailed calculation of such a mean value in QED
in the one-loop approximation, taking an exact account of
the interaction with the electric background, has been
given in [9]. In addition, we consider the case of charged
bosons and QCD with an external chromoelectric field. We
demonstrate that under these conditions, the effect of
particle-creation is precisely the main reason for the
change of the energy of matter.

A constant electric field acting during an infinite time
creates an infinite number of pairs from vacuum even in a
finite volume. This is why we choose the external back-
ground as a constant electric field acting during a finite
period of time; we refer to this field as a T-constant field.
The finiteness of field duration is a natural regularization in
the given problem; on the other hand, it is a necessary
physical parameter, which subsequently enters the consis-
tency restriction on the value of the maximal electric field.
The T-constant field turns on at�T=2 ¼ t1 > tin and turns
off at T=2 ¼ t2 < tout. We choose the nonzero T-constant
field potential A3ðtÞ as a continuous function of the form
A3ðtÞ ¼ �Et for t 2 ½t1; t2�, being constant for t 2
ð�1; t1Þ and t 2 ðt2;þ1Þ. The effects of particle creation
by the T-constant field have been studied in detail in [10].
In particular, it was shown that in case

T � ðeEÞ�1=2½1þm2=eE� (2)

all the finite effects caused by particle-creation reach their
asymptotic values, whereas the details involving the form
of switching the field on and off can be neglected. In our
calculations, we assume this restriction from below for the
time T.

Taking the time instant t2 � 0 ¼ T=2� 0 immediately
before the electric field has been turned off, we shall now

examine the mean-energy value hĤi of the spinor field on
condition that its state at the initial instant tin ! �1
should be vacuum. The potentials of the T-constant field
do not depend on the spatial coordinates, which implies

that hĤi is proportional to the space volume V. In the one-

loop approximation, hĤi ¼ wV, with the mean-energy
density w being independent of the spatial coordinates,

w ¼ 1
2h0; inj½ ðxÞy;H ðxÞ�j0; inijx0¼t2�0; (3)

where H is the one-particle Dirac Hamiltonian;  ðxÞ are
the operators of the Dirac field in the generalized Furry
representation (see, e.g., [7]) obeying the Dirac equation
with the external background; j0; ini is the initial vacuum

state in the same representation. The above-mentioned
choice allows one to take a complete account of the pair-
creation effect during the entire time. Also, since the
electric field has not yet been switched off, this allows us
to make a complete study of the vacuum polarization
effect. Notice that the initial vacuum j0; ini is identical
with the vacuum of those free particles that correspond to
the initial potential A3 ¼ ET=2.
The expression for w is obviously real valued. One can

see that it can be represented as

w ¼ �1
4ð lim
t!t0�0

tr½ð@0 � @00ÞSinðx; x0Þ�
þ lim

t!t0þ0
tr½ð@0 � @00ÞSinðx; x0Þ�Þjx¼x0;x0¼t2�0; (4)

where tr½� � �� is the trace in the space of 4� 4 matrices,
and Sinðx; x0Þ is the so-called in-in Green function,

Sinðx; x0Þ ¼ ih0; injT ðxÞ � ðx0Þj0; ini
¼ Scðx; x0Þ þ Spðx; x0Þ; (5)

where Scðx; x0Þ is Feynman’s causal Green function, while
the function Spðx; x0Þ is a difference of two Green’s func-
tions, satisfying the homogeneous Dirac equation; see [7].
The final vacuum j0; outi is the vacuum of free particles in
the generalized Furry picture and corresponds to the con-
stant potential A3 ¼ �ET=2.
The separation of Sin into the c- and p-parts is respon-

sible for the separation of w into the two respective sum-
mands w ¼ wc þ wp. One can verify that the expression
for wc has a finite limit at T ! 1; i.e., it permits a
transition to the limit of a constant electric field. Then Sc

can be presented by a proper-time integral; see [11]. Using
this expression, one can readily verify that wc is expressed
in terms of the real-valued part of HEL (at B ¼ 0). This
contribution is due to vacuum polarization. In a super-
strong electric field, it has the form

wc ¼ E
@ReLð1Þ

@E
� ReLð1Þ � �

�
�

3�
ln
eE

m2

�
Lð0Þ:

The contribution wp arises due to particle-creation. It is
computed as follows. First of all, using the general theory
of particle-creation (see, [7]), one can represent the func-
tion Spðx; x0Þ in the form

Spðx; x0Þ ¼ i
X
nm

� nðxÞ½Gðþj�ÞGð�j�Þ�1�ynmþ � mðx0Þ: (6)

Here, f	 nðxÞg are the so-called in-solutions of the Dirac
equation in a T-constant electric field, their asymptotics at
t 
 t1 being stationary states of free electrons (þ) and
positrons (�) for the Dirac Hamiltonian with the constant
potential A3 ¼ ET=2. The matricesGð	j	Þ (being a matrix
generalization of the Bogolyubov coefficients) are defined
by decompositions of the so-called out-solutions in the in-
solutions: 	 ðxÞ¼þ  ðxÞGðþj	Þ þ � ðxÞGð�j	Þ. Here,
f	 nðxÞg are the out-solutions of the Dirac equation in a
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T-constant electric field. The quantum numbers of particles
are chosen as n ¼ ðp; rÞ, where p is the particle momentum
and r ¼ 	1 is the spin projection; the asymptotics of the
out-solutions at t � t2 describe free particles [electrons
(þ) and positrons (�)] with an energy spectrum defined
by the Dirac Hamiltonian with the constant potential A3 ¼
�ET=2 as follows "p;r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

? þ ðeET=2� p3Þ2
q

,

p? ¼ ðp1; p2; 0Þ. The matrices Gð	j	Þ are diagonal and
can be expressed via the differential mean number of pairs
created from vacuum, @p;r. Then we obtain

wp ¼ 1

4�3

Z
dp

X
r¼	1

@p;r"p;r: (7)

This quantity is the mean-energy density of pairs created
from vacuum. It can be estimated in the case of strong
electric fields, E * Ec and a sufficiently large T as follows.
As has been demonstrated in [10], in case the time T is
sufficiently large,

T � ðm2 þ p2
? þ eEÞðeEÞ�3=2;

and the longitudinal momenta are restricted by the condi-

tion jp3j 
 ð ffiffiffiffiffiffi
eE

p
T=2� KpÞ

ffiffiffiffiffiffi
eE

p
, where Kp is a suffi-

ciently large arbitrary constant,
ffiffiffiffiffiffi
eE

p
T � Kp � 1þ

ðm2 þ p2
?Þ=eE, the differential mean numbers @p;r have

the form

@asy
p;r ¼ exp

�
��m

2 þ p2
?

eE

�
:

For any fixed p2
?, the function @p;r is fast decreasing for

jp3j> ð ffiffiffiffiffiffi
eE

p
T=2� KpÞ

ffiffiffiffiffiffi
eE

p
. For this reason, we can dis-

regard the contribution to the integral (7) due to the inte-
gration over such momenta p3 in comparison with the main
contribution, which is defined by the dimensionless pa-
rameter eET2. The latter parameter, in fact, determines a
large integration domain over p3. In its turn, the exponen-
tial decrease of @asy

p;r with the grows of p2
? allows one to

ignore the contributions to the integral (7) due to a large

p2
?=eE *

ffiffiffiffiffiffi
eE

p
T. Consequently, in order to evaluate the

term which leads in
ffiffiffiffiffiffi
eE

p
T in integral (7) we can replace

@p;r by @asy
p;r under condition (2), while restricting the limits

of integration over momenta by the region jp3j 
ffiffiffiffiffiffi
eE

p ð ffiffiffiffiffiffi
eE

p
T=2� KÞ, where K is a sufficiently large arbi-

trary constant,
ffiffiffiffiffiffi
eE

p
T � K � 1þm2=eE. Having calcu-

lated the integral (7) over p?, we obtain the T-leading term
in the form

wp ¼ eET@; @ ¼ e2E2T

4�3
exp

�
��m

2

eE

�
: (8)

We now suppose that the energy density of particlesw ¼
wp, arising precisely due to the action of a T-constant
electric field, should be essentially smaller than the density
of the electric field itself, being equal to the classical

Maxwell density of energy, Eð0Þ ¼ E2=8�. Thus, the con-

dition of a smallness of backreaction is wp � E2=8�,
which, owing to (8), takes the form of a restriction from
above on the dimensionless parameter eET2:

eET2 � �2

2e2
exp

�
�
m2

eE

�
: (9)

On the other hand, all the asymptotic formulas have been
obtained under condition (2), which restricts the mentioned
parameter from below, ½1þm2=eE�2 � eET2. Since
�2=2e2 � 1, there exists a region of values of E and T
that satisfies both the inequalities. We note that time scale
from above in (9) is more restrictive than the scale derived
from the rate of pair production; see [12].
In case the initial state is in thermal equilibrium at tem-

perature �, the mean-energy density has an additional term
wc�, which represents, in fact, the work of a T-constant field
on particles from the initial state, as well as the term wp�

wp� ¼ � 1

4�3

Z
dp

X
r¼	1

@p;rnp;rðinÞ"p;r;

np;rðinÞ ¼ ½expð~"p;r=�Þ þ 1��1;

where ~"p;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

? þ ðqET=2þ p3Þ2
q

is the energy

of a free in-particle. The latter term determines a
temperature-dependent correction to the energy of parti-
cles created from vacuum; see [9]. The energies of particles
that contribute to wc� in the limit of a large T are mostly

determined by a large longitudinal kinetic momentum,
with the energy being of order eET, as well as the energies
of particles created at � ¼ 0 in the expression (8) for wp.
Given that, however, the density of initial particles is
constant, being determined only by the initial condition,
whereas the density of created particles increases in pro-
portion with T. Therefore, at large T and E, wc� can be

neglected in comparison with wp, and w ’ wp þ wp� .
In case the initial state is in thermal equilibrium at low

temperatures �� eET, the contributionwp� turns out to be
small in comparison with wp. At high temperatures ��
eET, the energy density has the form w ¼ ðeET=6�Þwp.
Thus, the restriction (9) is valid both for the vacuum initial
state and for a low-temperature initial thermal state. At
high temperatures we have a weaker restriction:

ðeEÞ2T3

�
� 3�2

e2
exp

�
�
m2

eE

�
: (10)

Analogously, one can find restrictions for QED with
charged bosons in a T-constant electric field. At low tem-
peratures, we have

eET2 � �2

Je2
exp

�
�
m2

eE

�
;

where J is the number of the spin degrees of freedom (J ¼
1 for scalar particles and J ¼ 3 for vector particles). In the
case of high temperatures, the restriction has a completely
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different character than (10), namely,

�T lnð ffiffiffiffiffiffi
eE

p
TÞ � �2

2Je2
exp

�
�
m2

eE

�
:

One can easily extend these results to Dþ 1 dimensions,
using the corresponding N in (8), taken from Eq. (37) in
[10].

A similar analysis can be performed in the case of QCD
with an electriclike non-Abelian external background.
Such a background is a part of the known chromoelectric
flux-tube model [13]. At present, the chromoelectric field
is associated [14] with an effective theory, color glass
condensate. Here, we shall derive restrictions on the exter-
nal background which allows one to treat particles created
from vacuum still as weakly coupled, owing to the property
of asymptotic freedom in QCD. To this end, we use the
results obtained in [15,16] for QCD with a constant SUð3Þ
chromoelectric field Ea (a ¼ 1; . . . ; 8). If the initial state is
vacuum, the density of created gluons is noticeably higher
than the density of created quarks at any intensity of a
T-constant chromoelectric field; see [15]. The same is valid
at any finite temperature; therefore, for our purposes it is
sufficient to take into account only the gluon contribution.
It has been demonstrated in [15] that the p?-distribution
density ngluonp? of gluons produced from vacuum with all the

possible values p3 and the quantum numbers that charac-
terize the inner degrees of freedom can be presented as
follows:

ngluonp? ¼ 1

4�3

X3
j¼1

Tq ~EðjÞ@ðjÞ
p ; @ðjÞ

p ¼ exp

�
��p2

?
q ~EðjÞ

�
; (11)

where ~EðjÞ are positive eigenvalues of the matrix ifabcEc

for the adjoint representation of SUð3Þ, and q is the cou-
pling constant. The ðjÞ terms in (11) can be interpreted as
those obtained for Abelian-like electric fields ~EðjÞ, respec-
tively. Then, the total energy density of gluons created
from vacuum by the field ~EðjÞ is determined by integrals

of the kind (7). Taking into account that maxima of the
fields are restricted by the condition ~EðjÞ 


ffiffiffiffiffiffi
C1

p
(C1 ¼

EaEa is a Casimir invariant for SUð3Þ) and the relationP
3
j¼1

~E2
ðjÞ ¼ 3C1=2, one can find that at low temperatures

�� q
ffiffiffiffiffiffi
C1

p
T the consistency restriction for the dimension-

less parameter q
ffiffiffiffiffiffi
C1

p
T2 has the form

q
ffiffiffiffiffiffi
C1

p
T2 � �2=3q2:

As in the case of QED, this restriction must be accompa-
nied by a restriction from below, 1 � q

ffiffiffiffiffiffi
C1

p
T2, which is

related to the fact that all the asymptotic expressions have
been obtained for sufficiently large values of T. Therefore,
the T-constant SUð3Þ chromoelectric field approximation
is consistent during the period when the produced partons

can be treated as weakly coupled, due to the property of
asymptotic freedom in QCD. At high temperatures, ��
q

ffiffiffiffiffiffi
C1

p
T, the consistency restriction is far more rigid:

�T lnðq ffiffiffiffiffiffi
C1

p
T2Þ � �2=3q2:

The above established consistency restrictions deter-
mine, in fact, the time scales from above of depletion of
an electric field due to the backreaction.
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