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We show that new massless Dirac fermions are generated when a slowly varying periodic potential is

applied to graphene. These quasiparticles, generated near the supercell Brillouin zone boundaries with

anisotropic group velocity, are different from the original massless Dirac fermions. The quasiparticle wave

vector (measured from the new Dirac point), the generalized pseudospin vector, and the group velocity are

not collinear. We further show that with an appropriate periodic potential of triangular symmetry, there

exists an energy window over which the only available states are these quasiparticles, thus providing a

good system to probe experimentally the new massless Dirac fermions. The required parameters of

external potentials are within the realm of laboratory conditions.
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Semiconducting and metallic superlattice structures are
now routinely used in manipulating the electronic structure
of materials [1]. These superlattices have additional elec-
tronic band gaps at the supercell Brillouin zone (SBZ)
boundary, which often give rise to interesting phenomena.

Since the successful isolation of graphene [2–5], numer-
ous studies have been performed on this novel material [6].
In particular, there have been a number of interesting
theoretical predictions on graphene superlattices (defined
to be graphene under an external periodic potential or
graphene with periodic defects). For example, for a one-
dimensional (1D) or a two-dimensional (2D) rectangular
graphene superlattice, the group velocity of the low-energy
charge carriers is renormalized anisotropically [7], a cor-
rugated graphene sheet is expected to show charge inho-
mogeneity and localized states [8], and arrays of antidots
(missing carbon atoms) of specific design could induce
band gaps [9] or magnetism [10].

Graphene superlattices are not only of theoretical inter-
est, but have also been experimentally realized. Super-
lattice patterns with a periodicity as small as 5 nm have
been imprinted on graphene through electron-beam in-
duced deposition of adatoms [11]. Also, triangular patterns
with �10 nm lattice period have been observed for gra-
phene on metal surfaces [12–14]. Using periodically pat-
terned gates is another possible route to make graphene
superlattices.

In this Letter, we show that when a periodic potential is
applied to graphene, a new generation of massless Dirac
fermions is formed at the SBZ boundaries. The electronic
wave vector (measured from the new Dirac point), the
group velocity, and a generalized pseudospin vector, de-
fined below, of the newly generated massless Dirac fermi-
ons are not collinear anymore. In 1D or 2D rectangular
graphene superlattices, the features of these new massless
Dirac fermions are obscured by other states existing around

the new Dirac point energy. We show however that, in
triangular graphene superlattices (TGSs), there can be no
states other than those of the new massless Dirac fermions
around the energy of the new Dirac points. Therefore,
doped or gated TGSs should provide a clear way to probe
this new class of massless Dirac fermions that are absent in
pristine graphene.
A physical requirement for the discussed phenomenon is

that the variation of the external periodic potential is much
slower than the intercarbon distance so that intervalley
scattering (between K and K0) may be neglected [15,16],
and we limit our discussion to the low-energy electronic
states of graphene which have wave vectors close to the K
point. The Hamiltonian of the low-energy quasiparticles in
pristine graphene in a pseudospin basis, ð10Þeik�r and ð01Þeik�r
[where ð10Þ and ð01Þ are Bloch sums of � orbitals with wave

vector K on the sublattices A and B, respectively, and k is
the wave vector from the K point], is given by [17]

H0 ¼ @v0ð�i�x@x � i�y@yÞ; (1)

where v0 is the group velocity and �’s are the Pauli
matrices. The eigenstates and the energy eigenvalues are
given by

 0
s;kðrÞ ¼

1ffiffiffi
2

p 1
sei�k

� �
eik�r (2)

and

E0
sðkÞ ¼ s@v0k; (3)

respectively, where s ¼ �1 is the band index and �k is the
polar angle of the wave vector k. Equation (2) indicates
that the pseudospin vector is parallel and antiparallel to the
wave vector k in the upper band (s ¼ 1) and in the lower
band (s ¼ �1), respectively. Moreover, the pseudospin
vector is always parallel to the group velocity.
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Let us first consider the case that a 1D potential VðxÞ,
periodic along the x direction with periodicity L, is applied
to graphene. The Hamiltonian H then reads

H ¼ @v0ð�i�x@x � i�y@y þ IVðxÞ=@v0Þ; (4)

where I is the 2� 2 identity matrix. After a similarity

transformation, H0 ¼ Uy
1HU1, using the unitary matrix

U1 ¼ 1ffiffiffi
2

p e�i�ðxÞ=2 �ei�ðxÞ=2
e�i�ðxÞ=2 ei�ðxÞ=2

 !
; (5)

where �ðxÞ is given by [18]

�ðxÞ ¼ 2
Z x

0
Vðx0Þdx0=@v0; (6)

we obtain [19]

H0 ¼ @v0
�i@x �ei�ðxÞ@y

e�i�ðxÞ@y i@x

 !
: (7)

To obtain the eigenstates and energy eigenspectrum of
H0 in general, using a plane wave spinor basis set, we need
an infinite number of plane waves with wave vectors differ-
ent from one another by the reciprocal lattice vectors of the
superlattice. [A reciprocal vector of the superlattice is
given by Gm ¼ mð2�=LÞx̂ � mG0x̂ where m is an inte-
ger.] However, if we are interested only in quasiparticle
states whose wave vector k � pþGm=2 is such that
jpj � G0, we could treat the terms containing @y in

Eq. (7) as a perturbation since Gm is along x̂. H0 may be
reduced to a 2� 2matrix using the following two states as
basis functions

1

0

 !
0eiðpþGm=2Þ�r and

0
1

� �0
eiðp�Gm=2Þ�r: (8)

[Note that the spinors ð10Þ0 and ð01Þ0 now have a different

meaning from ð10Þ and ð01Þ that were defined before because

of the unitary transformation.]
In order to calculate these matrix elements, we expand

ei�ðxÞ as

ei�ðxÞ ¼ X1
l¼�1

fl½V�eilG0x; (9)

where fl½V�’s are coefficients determined by the periodic
potential VðxÞ. One important thing to note is that, in
general,

jflj< 1; (10)

which can directly be deduced from Eq. (9). The physics
simplifies when the external potential VðxÞ is an even
function. Then, fl½V�’s are all real [22]. For states with
wave vector k very close to Gm=2, the 2� 2 matrix M
whose elements are calculated from the Hamiltonian H0
with the basis given by Eq. (8) can be written as

M ¼ @v0ðpx�z þ fmpy�yÞ þ @v0mG0=2I: (11)

After performing yet another similarity transformation

M0 ¼ Uy
2MU2 with

U2 ¼ 1ffiffiffi
2

p 1 1
�1 1

� �
; (12)

we obtain the final result:

M0 ¼ @v0ðpx�x þ fmpy�yÞ þ @v0mG0=2I: (13)

The only difference of the Hamiltonian in Eq. (13) from
that in Eq. (1), other than a constant energy term, is that the
group velocity of quasiparticles moving along the y direc-
tion has been changed from v0 to fmv0 [23]. Thus, the
electronic states near k ¼ Gm=2 are also those of massless
Dirac fermions but having a group velocity varying aniso-
tropically depending on the propagation direction.
Moreover, the group velocity along the y direction is al-
ways lower than v0 [Eq. (10)] regardless of the form or
magnitude of the periodic potential VðxÞ.
The eigenstate and the energy eigenvalue of the matrix

M0 are given by

’s;p ¼ 1ffiffiffi
2

p 1
sei�p

� �00
(14)

and

EsðpÞ ¼ s@v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ jfmj2p2

y

q
þ @v0mG0=2; (15)

respectively, where�p is the polar angle of the pseudospin

vector c of ’s;p, which is parallel to sðpxx̂þ fmpyŷÞ. The
spinor ’s;p, however, should not be confused with the one

in Eq. (2) representing the sublattice degree of freedom, or
with the one in Eq. (8). A double prime in Eq. (14) em-
phasizes this point.
The eigenstate  s;kðrÞ of the original Hamiltonian H in

Eq. (4) can be obtained by using Eqs. (5), (8), (12), and
(14). Since the unitary transformations conserve the inner
product between eigenstates, if a generalized pseudospin
vector for the original Hamiltonian H in Eq. (4) is defined
as the pseudospin vector of the transformed Hamiltonian
M0, i.e., c, the scattering matrix elements between states of
these new massless Dirac fermions due to long-wavelength
perturbations are described by the generalized pseudospin
in the same manner as those of the original massless Dirac
fermions in pristine graphene are described with their
pseudospin.
On the other hand, the group velocity vector vg is

parallel to sðpxx̂þ f2mpyŷÞ [Eq. (15)]. Therefore, in gen-

eral, the three vectors p, c, and vg are not collinear (Fig. 1).

However, it is obvious that if the wave vectors (p) of two
electronic states are aligned or antialigned to each other, so
are their generalized pseudospin vectors, as in pristine
graphene, resulting in a maximum or a zero overlap be-
tween the two states, respectively. If VðxÞ is not an even
function, the dispersion relation of the new massless Dirac
fermions remains the same as Eq. (15), but a generalized
pseudospin vector may not be defined [25].
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Similarly, for graphene in slowly varying 2D periodic
potential, new massless Dirac fermions are generated cen-
tered around the wave vectors kc ¼ G=2where theG’s are
the superlattice reciprocal vectors. A state with wave vec-
tor k around kc mixes strongly with another state with
wave vector k�G by the superlattice potential.
Applications of the same argument that we made use of
in the case of 1D graphene superlattices result in linear
band dispersions.

Even though new massless Dirac fermions are generated
in 1D graphene superlattices, because there is no SBZ
boundary perpendicular to the periodic direction, they are
obscured by other states, and there is no new value of
energy at which the density of states vanishes. In 2D
rectangular graphene superlattices, the SBZ is a rectangle.
It turns out that the energy separation at the SBZ corners

also vanishes due to the chiral nature of graphene [7].
Therefore, in 2D rectangular graphene superlattices, again,
there are states other than the new massless Dirac fermions
in the range of the new Dirac point energy. However, as we
show below, in TGSs, there can exist an energy window
within which the only available states are the newly gen-
erated massless Dirac fermions.
As an illustration, we consider a TGS shown in Fig. 2(a).

The external potential is of a muffin-tin type with value U0

in a triangular array of disks of diameter d and zero outside
of the disks. The spatial period of the superlattice is L.
Figure 2(b) shows the SBZ of a TGS.
Figure 2(c) shows the electron energy separation be-

tween states in the first and the second band above the
original Dirac point energy along the path ~K ~M ~K0 in the
SBZ [Fig. 2(b)] for a TGS. The energy separation at the
corner, or the ~K point, of the SBZ is largest, contrary to that
of the rectangular graphene superlattices where the energy
separation closes at the SBZ corners [7], but that at the ~M
point is zero. Newmassless Dirac fermions are thus formed
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FIG. 2. (a) A TGS with muffin-tin type of periodic potential
with a spatial period L. The potential is U0 inside the gray disks
with diameter d and zero outside. (b) The SBZ of a TGS. (c) The
energy separation �E between states in the first and the second
band above the original Dirac point energy versus the wave
vector k along the path ~K ~M ~K0 in a TGS given by U0 ¼ 0:5 eV,
L ¼ 10 nm, and d ¼ 5 nm.
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FIG. 3 (color online). (a) Energy dispersion relation of a TGS
with external potential with U0 ¼ 0:5 eV, L ¼ 10 nm, and d ¼
5 nm for the first and the second band above the original Dirac
point energy as a function of wave vector k from the original
Dirac point. Arrows indicate the ~M points of the SBZ around
which new massless Dirac fermions are generated. (b) The DOS
of charge carriers in electron orbits (bright and red) and hole
orbits (dark and blue) in the TGS characterized in (a). The
original Dirac point energy is set at zero. Dashed black line
shows the DOS of pristine graphene. The arrow indicates the
new Dirac point energy.
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FIG. 1. Schematic diagram showing an equienergy contour
(ellipse) with E ¼ @v0k0 þ @v0mG0=2 of the newly generated
massless Dirac fermions. The quasiparticle wave vector k, the
generalized pseudospin vector (see text) c, and the group veloc-
ity vector vg are represented by solid arrows, dashed arrows, and

dash-dotted arrows, respectively, for graphene in an even peri-
odic potential.
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around the ~M points. With the set of potential parameters in
Fig. 2 (U0 ¼ 0:5 eV, L ¼ 10 nm, and d ¼ 5 nm), the
energy separation at the ~K point is 82 meV, much larger
than room-temperature thermal energy. This energy sepa-
ration can be tuned by changing the superlattice
parameters.

Figure 3(a) shows the energy dispersions of the first and
the second band of the considered TGS. We can see the
linear energy dispersion relation at the ~M points [Fig. 2(c)].
Close to the original Dirac point energy (E ¼ 0), the
density of states (DOS) varies linearly with energy, similar
to that of pristine graphene, except that the slope is larger
because of the reduced band velocity. At around E ¼
0:16 eV, there exists another energy value where the
DOS vanishes also linearly.

In conclusion, we have shown that a new class of mass-
less Dirac fermions is generated in graphene when a peri-
odic potential is applied and we have studied the novel
characteristics of these quasiparticles. Moreover, in trian-
gular graphene superlattices, there can exist energy win-
dows where there are no other states than these new
quasiparticles. The triangular graphene superlattices thus
should provide a good platform for experimental probing
of the new massless Dirac fermions predicted here.
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Note added in proof.—After submission of this Letter, an
angle-resolved photoemission experiment on graphene on
Ir(111) surface resulting in superlattice formation was
reported [26] in which minigap openings at the SBZ
boundary are found and evidence of replicas of the primary
Dirac cone observed.
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