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We show that the combined effects of spin orbit, monoclinic distortion, and p-d hybridization in

tetrahedrally coordinated Fe in LaFeAsO invalidate the naive Hund’s rule filling of the Fe d levels. The

two highest occupied levels have one electron each, but, as a result of differing p-d hybridizations, the

upper level is more itinerant, while electrons in the lower level are more localized. The resulting magnetic

moment is highly anisotropic with an in-plane value of 0:25�B–0:35�B per Fe and a z projection of

0:06�B, both of which are in agreement with experiment.
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The representative parent material LaFeAsO in the rap-
idly growing class of iron-based superconductors [1–4]
exhibits a structural monoclinic distortion from tetragonal
symmetry at 150 K followed by a transition to an antifer-

romagnet [5–8] at 134 K with a unit cell of (
ffiffiffi
2

p � ffiffiffi
2

p � 2Þ.
The observed magnetic moment per Fe atom has been
reported to range from 0:25�B [8] to 0:36�B [5] and lies
in the a-b plane. Such a low value of the magnetic moment
is astounding, because any application of Hund’s rule to the
Fe d states results in a moment of at least 2�B. We offer
here a resolution of the low in-plane magnetic moment in
LaFeAsO which is rooted in three effects that are well
known to be important in FeAs-based materials [9–11],
namely, spin orbit, strong hybridization between the Fe d
and the As 4p orbitals, and the lattice compression along
the z axis to the lower monoclinic symmetry. All three
conspire to destroy the naive Hund’s rule filling of the Fe
atomic levels as illustrated in Fig. 1.

That the properties of Fe-based materials are strong
functions of the hybridization is not new. Well known is
the case of an isolated Fe atom which has a moment of
4�B, whereas in the metal the moment is roughly halved to
2:2�B per Fe as a result [12] of the 4s and 3d hybridization.
Less well known, but more pertinent to LaFeAsO, is the
case of the zinc blende complex FeAs which is also an
antiferromagnet and has a monoclinic distortion [13].
First-principles calculations on Fe films deposited on
GaAs [10] reveal that the value of the magnetic moment
per Fe is a strong function of the Fe-As bond distance. The
moment vanishes [10] for Fe-As distances less than 2.36 Å.
This effect was attributed [10] to the strong hybridization
between the Fe 3d and the As 4p orbitals. In LaFeAsO, the
average Fe-As bond distance 2.4 Å is close to the critical
value of 2.36 Å found for Fe-As films. As the degree to
which Fe and As are noncoplanar in FeAs and LaoFeAs is
identical, similar extreme sensitivity of the moment to the
p-d hybridization is expected in LaFeAsO.

It is ultimately symmetry that dictates hybridization. In
LaFeAsO, each Fe is tetrahedrally coordinated. Full tetra-
hedral (cubic) symmetry splits the d states into two irre-

ducible representations [9,11]: (i) the threefold degenerate
�15 levels consisting of the dxy, dyz, and dxz and (ii) the

doubly degenerate �12 consisting of dx2-y2 and dz2 . The �12

levels lie lower in energy. It is important to note that, in a
tetrahedral field, only the �15 states have the right symme-
try to hybridize with the p states of the sp neighboring
atom, forming bonding and antibonding hybrid orbitals.
The �12 levels remain nonbonding and hence will be
neglected in our hybridization analysis. They will be as-
sumed to constitute a full band (4 electrons). The imme-
diate problem with applying Hund’s rule to the �15 levels is
that the effective moment on these levels is at least 2�B as
found in recent calculations [14]. While inclusion of mag-
netic frustration [15] might offer some reduction in the
moment, it offers no resolution of the problem that the
moment lies in the xy plane. The answer lies elsewhere as
suggested by recent first-principles calculations [16] and a
p-d mixing model [17].
The experimental observation that the Fe moment lies in

the plane is highly suggestive of spin-orbit coupling. To
this end, our starting point is a general model

H ¼ p2=ð2mÞ þ V0 þ @=ð4m2c2ÞðrV0 � pÞ � ~S (1)

FIG. 1. Evolution of the energy levels of the Fe 3d and As 4p
levels after the inclusion of spin-orbit coupling, p-d hybridiza-
tion Vpd, and the monoclinic crystal field distortion.

PRL 101, 126401 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

19 SEPTEMBER 2008

0031-9007=08=101(12)=126401(4) 126401-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.126401


for a cubic crystal with spin-orbit interaction, where p is
the momentum operator and S is the spin operator. This
interaction breaks SUð2Þ symmetry. The rough idea is to
include the effects of p-d hybridization and the z axis
distortion through a series of successive diagonalizations
to obtain the eigenstates in the final basis. We include only
the outline of this calculation since an analogous analysis
has been done for chalcopyrite semiconductors [9]. In
obtaining the basis that diagonalizes the spin-orbit interac-

tion, we define j�i ¼ jðX� iYÞ= ffiffiffi
2

p i, j0i ¼ jZi, which are
eigenstates of angular momentum (L, Lz) with eigenvalues
ð1;�1Þ and ð1; 0Þ, respectively. The Hamiltonian for the p
levels is diagonalized through

��
p1ð�8Þ ¼ 1=

ffiffiffi
3

p j� "i þ
ffiffiffiffiffiffiffiffi
2=3

p
j0 #iðJz ¼ �1=2Þ;

��
p0ð�8Þ ¼ jþ "iðJz ¼ þ3=2Þ;

��
p2ð�7Þ ¼

ffiffiffiffiffiffiffiffi
2=3

p j� "i � 1=
ffiffiffi
3

p j0 #iðJz ¼ �1=2Þ;
��

p1ð�8Þ ¼ �1=
ffiffiffi
3

p jþ #i þ
ffiffiffiffiffiffiffiffi
2=3

p
j0 "iðJz ¼ þ1=2Þ;

��
p0ð�8Þ ¼ j� #iðJz ¼ �3=2Þ;

��
p2ð�7Þ ¼ � ffiffiffiffiffiffiffiffi

2=3
p jþ #i � 1=

ffiffiffi
3

p j0 "iðJz ¼ þ1=2Þ:

(2)

States with the same indices are degenerate, and �n de-
notes the symmetry of a state. Likewise, the basis for the d
levels which initially have �15 symmetry

��
d1ð�8Þ ¼ 1=

ffiffiffi
3

p j� "i þ ffiffiffiffiffiffiffiffi
2=3

p j� #iðJz ¼ �1=2Þ;
��

d0ð�8Þ ¼ j� "iðJz ¼ þ3=2Þ;
��

d2ð�7Þ ¼
ffiffiffiffiffiffiffiffi
2=3

p
j� "i � 1=

ffiffiffi
3

p j� #iðJz ¼ �1=2Þ;
��

d1ð�8Þ ¼ �1=
ffiffiffi
3

p j� #i þ
ffiffiffiffiffiffiffiffi
2=3

p
j� "iðJz ¼ þ1=2Þ;

��
d0ð�8Þ ¼ j� #iðJz ¼ �3=2Þ;

��
d2ð�7Þ ¼ � ffiffiffiffiffiffiffiffi

2=3
p j� #i � 1=

ffiffiffi
3

p j� "iðJz ¼ þ1=2Þ

(3)

is formed from the states; j�i ¼ jðYZþ iZXÞ= ffiffiffi
2

p i, j�i ¼
jðYZ� iZXÞ= ffiffiffi

2
p i, and j�i ¼ jXYi are the eigenstates of

ðL; LzÞ with eigenvalues of ð2;þ1Þ, ð2;�1Þ, and ð2; 0Þ,
respectively. As is clear, none of these states is an eigen-
state of Sz as is expected once the SUð2Þ spin symmetry is
broken by the spin-orbit interaction.

To consider the hybridization, we collate the states into
two groups, segregating them according to their superscript
� or �. Within each group they are ordered as follows:
��

p1ð�8Þ, ��
d1ð�8Þ, ��

p0ð�8Þ, ��
d0ð�8Þ, ��

p2ð�7Þ, and

��
d2ð�7Þ. Taking into consideration that only states of the

same symmetry mix,

h��
pið�mÞjVpdj��

djð�nÞi ¼ M�ij����mn; (4)

we find that the hybridization matrix can be written as

Vpd ¼

�p

3 M 0 0 0 0

M E� �q

3 0 0 0 0

0 0
�p

3 M 0 0

0 0 M E� �d

3 0 0

0 0 0 0 �2
�p

3 M

0 0 0 0 M Eþ 2 �d

3

2
666666666664

3
777777777775

;

(5)

where �p and �q are the spin-orbit splitting of the p and d

band, respectively. The highest three eigenenergies are

�0 ¼ �1 ¼ ½�p=3þ E� �d=3�=2þ ffiffiffiffiffiffi
�1

p
=2; (6)

�2 ¼ ½�2�p=3þ Eþ 2�d=3�=2þ ffiffiffiffiffiffi
�2

p
=2; (7)

where �1 ¼ ð�=3� Eþ�d=3Þ2 þ 4M2 and �2 ¼
ð2�=3þ Eþ 2�d=3Þ2 þ 4M2. According to the symme-
tries �n, n ¼ 7 or n ¼ 8, the corresponding eigenstates are
��

i ð�nÞ ¼ ai�
�
pið�nÞ þ bi�

�
dið�nÞ, with the coefficients ai

(i ¼ 0; 1; 2) and bi defined as

�0 ¼ �1 ¼ a21 ¼ 1�b21 ¼ ½1þM2=ð�1 �Eþ�d=3Þ2��1;

�2 ¼ a22 ¼ 1�b22 ¼ ½1þM2=ð�2 �E� 2�d=3Þ2��1:

To gain information about the spins, we transform the
operator for the z projection of the spin

�I�
z ¼ 1

3

�1 0 0 0 2
ffiffiffi
2

p
0

0 �1 0 0 0 2
ffiffiffi
2

p
0 0 3 0 0 0
0 0 0 3 0 0

2
ffiffiffi
2

p
0 0 0 1 0

0 2
ffiffiffi
2

p
0 0 0 1

2
666666664

3
777777775

(8)

and �
I�
z ¼ ��I�

z into the I� or I� basis.

Ultimately, we will focus only on the three highest
eigenstates. We refer to this reduced basis as II�;�. The
final ingredient is the z axis distortion from perfect cubic
symmetry. We consider a crystal field interaction of the
form

hXjVcfjXi ¼ 	hYjVcfjYi ¼ �p=3;

hZjVcfjZi ¼ �2�p=3;

hZXjVcf jZXi ¼ 	hYZjVcf jYZi ¼ �d=3;

hXYjVcfjXYi ¼ �2�p=3:

The parameter 	 accounts for the distortion in the a-b
plane. Experimentally, the lattice constants along a and b
differ by 0.3%. While any distortion is sufficient to lower
the Uð1Þ rotational symmetry in the plane to simply Z2

(Ising), this effect is small relative to the overall z axis tilt.
As the parameter �p is certainly not known within 0.3%,

we consider only the case of 	 ¼ 1. The crystal field

Hamiltonian in the II�;�R is
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Vcf ¼
�1 � �1 0 �2

0 �0 þ �1 0
�2 0 �2

2
64

3
75; (9)

where �1 ¼ 1
3 ½�p�1 þ �dð1� �1Þ� and �2 ¼

ffiffi
2

p
3 �

½�p
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p þ �d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �1Þð1� �2Þ
p �. Diagonalizing this

Hamiltonian gives rise to the following three energy levels:
E0ð�6Þ ¼ �0 þ �1 and

2E1;2ð�7Þ ¼ �1 þ �2 � �1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 � �2 � �1Þ2 þ 4�2

2

q

and their corresponding eigenstates

��;�
0 ð�6Þ ¼ ��;�

0 ð�7Þ; (10)

��;�
i ð�7Þ ¼ c1�

�;�
i ð�8Þ þ d1�

�;�
i ð�7Þ; (11)

which we refer to as the III�ð�Þ basis, where i ¼ 1; 2 and ci
and di are defined as c21 ¼ 1� d21 ¼ 1=½1þ �2

2=ðE1 �
�2Þ�, with d2 ¼ �c1, and c2 ¼ d1. In the final basis

III�ð�Þ, the �z spin matrix becomes

�
III�R
z ¼ ��

III�R
z ¼

e 0 f
0 1 0
f 0 �e

2
64

3
75; (12)

where e ¼ 2c1d1�þ ðd21 � c21Þ=3, f ¼ ðd21 � c21Þ��
2c1d1=3, and � ¼ 2

ffiffiffi
2

p ða1a2 þ b1b2Þ=3. So we can see
clearly that the final basis does not diagonalize the spin

matrix. Consequently, the states III�ð�Þ represent some
linear combination of spin up and spin down. A crucial
point about this spin matrix: The � and � states have
opposite projections of spin in the states with energies E1

and E2.
In the transformed basis, the resultant Hamiltonian reads

H ¼ X
a;�;i

Eac
y
a;�;ica;�;i �

X
a;b;�;
;hi;ji

t
�;

a;b c

y
a;�;icb;
;j þ H:c:

þ X
a;b�;
;i

U�

ab nia�nib
; (13)

where a; b ¼ 0; 1; 2 and �; 
 ¼ �;�, and

t0 ¼ t��00 ¼ t��00 ¼ a41tp þ b41td;

t1 ¼ t��11 ¼ t��11 ¼ ðc21a21 þ d21a
2
2Þtp þ ðc21b21 þ d21b

2
2Þtd;

t2 ¼ t��22 ¼ t��22 ¼ ðd21a21 þ c21a
2
2Þtp þ ðd21b21 þ c21b

2
2Þtd;

t12 ¼ t��12 ¼ c1d1ða21 � a22Þtp þ c1d1ðb21 � b22Þtd;
U��

0 	 U��
00 ¼ a41Up=2þ b41Ud=2;

U��
i ¼ ðC4

i þ A4
i =2ÞUp þ ðD4

i þ B4
i =2ÞUd; ði ¼ 1; 2Þ

U��
12 ¼ ½ðC1C2Þ2 þ A1A2Þ2=2�Up

þ ½ðD1D2Þ2 þ ðB1B2Þ2=2�Ud;

U��
0i ¼ ða1AiÞ2Up=2þ ðb1BiÞ2Ud=2ði ¼ 1; 2Þ: (14)

All other couplings, for example, t01 and t02, vanish by

symmetry. The coefficients Ai, Bi,Ci, andDi are defined as

Ai ¼ 1=
ffiffiffi
3

p
cia1 þ

ffiffiffiffiffiffiffiffi
2=3

p
dia1;

Bi ¼ 1=
ffiffiffi
3

p
cib1 þ

ffiffiffiffiffiffiffiffi
2=3

p
dib1;

Ci ¼
ffiffiffiffiffiffiffiffi
2=3

p
cia1 � 1=

ffiffiffi
3

p
dia1;

Di ¼
ffiffiffiffiffiffiffiffi
2=3

p
cib1 � 1=

ffiffiffi
3

p
dib1;

where c1, d1, ai, and bi are defined as before.
We analyzed the energy levels, interaction strengths, and

spin projections based on representative values for iron-
based systems. For instance, if we set Up ¼ Ud ¼ 4 eV

[18], tp ¼ td ¼ 0:7 eV [14,18], M ¼ 0:8 eV [14,15],

�p ¼ 0:426 eV [19], �d ¼ 0:08 eV [12], E ¼ 1:9 eV

[14], and �p ¼ �d ¼ 0:06 eV [20], we arrive at the pa-

rameters of Table I for Hamiltonian (13). Notice, however,
that there is an uncertainty in the value of these parameters,
especially the hybridization energy M and the monoclinic
distortion. Hence, we explore the dependence of the
Hamiltonian parameters on both. As shown in the first
panel of Fig. 2(a), the E2 level is the lowest followed by
E0 and then E1 for sufficiently large values ofM. As can be
seen from Fig. 2(b), U2 > E0 � E2 and E1 � E2.
Consequently, E2 and one of E0 or E1 will be singly
occupied. To determine the ground state spin configura-

tion, we note that both the interactions U��
12 � 0 and

U��
02 � 0 [see Fig. 2(c)] with � � � for the highest two

occupied levels. Recall that the z projection of the spins in
� and� is reversed in levelsE0 (orE1) relative toE2. Level
E0 is an eigenstate of Sz, while E1 is not. Consequently, the
lowest-energy configuration for single occupancy of the
levels E0 and E2 is an antiparallel alignment of the spins.
That is, both electrons are in the � or in the � state in both
levels. This configuration does not cost the repulsion term

U��
02 orU��

12 . Since there are 12 electrons to fill these levels,

we arrive at the filling structure shown in Fig. 1.
Consequently, the three effects considered preclude a naive
assignment of the spins according to Hund’s rule [17]. This
conclusion is a general result of this analysis, not an artifact
of fine-tuning the bare parameters.
The problem has now been reduced to the physics of two

low-lying energy levels E1 and E2. That a two-band reduc-
tion reproduces [21] the Fermi surface seen in the local
density approximation [22] and experiments [23] corrobo-
rates our approach. If we neglect the interactions in (13),
the problem can be easily diagonalized, and one finds two,
doubly degenerate, energy-shifted bands. The splitting
between the bands is due to the crystal field that shifts

TABLE I. Energy levels, hopping matrix elements, and inter-
actions in the three highest levels in transformed basis III�ð�Þ.

�pðdÞ E0 E1 E2 t0ð1;2Þ t��12 U0 U1 U2 U12 U01 U02

0.06 2.21 2.22 2.15 0.7 0 1.54 1.55 2.98 0.12 1.54 0.035

0 2.22 2.21 2.19 0.7 0 1.54 1.11 1.54 1.07 1.07 0.51
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each half-filled band away from the perfect nesting condi-
tion. As a result, it is difficult to reconcile the experimental
observation of a spin-density wave with a simple Fermi
surface instability due to nesting. The resolution may lie in
the interactions. As Fig. 2(b) indicates, for all values of the
hybridization, levels 1 and 2 have differing p and d char-
acter. In E2 the on-site interaction, U2 exceeds U0 (or U1)
by more than a factor of 2 at M ¼ 0:8 eV. Consequently,
single occupancy in the E0 (or the E1) level results in
itineracy, whereas in the E2 level Mott physics can be
relevant since U2 
 4t2. This difference is due entirely to
the different p-d character between the E0 (or E1) and E2

levels which is expected as they are orthogonal. Finally, we
show in the last panel in Fig. 2(d) the value of Sz in levels
E1 and E2. Recall that level E0 is an eigenstate of Sz with
the z projection opposite to that in E2. As shown in the last
panel in Fig. 2, the value of Sz in E2 is 0:95�B. If E0 is the
next lowest level, a net moment in the z direction of
0:06�B remains as has been recently observed [7]. If E1

is relevant (as would be the case for M> 0:83 eV), the z
moment vanishes as shown in Fig. 2(d). The itineracy of
the electrons in the E0 level does not affect this cancella-
tion as it is the average not the local spin configuration that
is relevant in a magnetization measurement. Hence, for
experimentally relevant values of M (0:5 eV<M<
1:0 eV), the residual z component of the moment is
strongly diminished. The remaining x-y component on

E2 is Sxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hSzi2

q
¼ 0:317�B. Such a moment can

order via the superexchange mechanism on E2 asU2 � t2.
The evolution of Sxy as a function of M in Fig. 2(d) shows

that the analysis here is consistent with the range of the
magnetic moment seen experimentally [5,8].

Our analysis also explains why the structural transition
[5] at 150 K must precede the onset of antiferromagnetism.
As the inset in Fig. 2(c) indicates, the on-site energy U2

diminishes as the crystal field associated with the mono-
clinic distortion vanishes. Once U2 < t2, a transition to an
antiferromagnet via the superexchange interaction is un-
tenable. The structural transition breaks rotational symme-
try in the plane not SUð2Þ which is already broken at the
outset by spin-orbit interaction. The success of the analysis
presented here in describing the antiferromagnet in the
parent material LaFeAsO implies that Eq. (13) should be
used in any subsequent analysis of superconductivity. The
presence of an itinerant band coupled to one with moderate
Mott physics makes the problem of the iron pnictides more
akin [24] to that of the Kondo lattice in heavy fermions
than the cuprates.
This work was supported by the NSF, Grant No. DMR-

0605769.
Note added.—While this work was under review,

McGuire et al. [7] reported a residual magnetic moment
along the c axis equal to 0:06�B as predicted here.
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FIG. 2 (color online). Energy levels, hoping matrix elements,
on-site interactions, intraband interaction, and spin components
as a function of hybridization M. Shown in the inset of (c) is the
on-site interaction U2 as a function of the monoclinic distortion.
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