
Delocalization-Localization Transition due to Anharmonicity

David Hajnal and Rolf Schilling

Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
(Received 13 May 2008; published 17 September 2008)

Analytical and numerical calculations for a reduced Fermi-Pasta-Ulam chain demonstrate that energy

localization does not require more than one conserved quantity. Clear evidence for the existence of a sharp

delocalization-localization transition at a critical amplitude Ac is given. Approaching Ac from above and

below, diverging time scales occur. Above Ac, the energy packet converges towards a discrete breather.

Nevertheless, ballistic energy transportation is present, demonstrating that its existence does not

necessarily imply delocalization.

DOI: 10.1103/PhysRevLett.101.124101 PACS numbers: 05.45.�a, 05.60.Cd, 63.20.Pw

One of the classical investigations of relaxation dynam-
ics of macroscopic systems is to determine the time evo-
lution of a perturbed equilibrium state. If this initial state
converges to equilibrium, the system is called mixing,
implying ergodicity, and it is nonmixing, otherwise. An
important question is: Does there exist a sharp ergodicity
breaking transition under variation of a physical control
parameter like temperature or strength of perturbation?

Within a mode coupling theory for supercooled liquids,
such a dynamical glass transition has been found, but its
sharpness seems to result from the mode coupling approx-
imations (for reviews see [1,2]). It is not our purpose to
contribute to the theory of glass transition, but to study the
influence of anharmonicity on the relaxational behavior at
zero-temperature. In that case, the generic lowest energy
state of a particle system is a crystal. One may ask a similar
question as above: Does an initially localized energy ex-
citation spread over the complete crystal, or not? In case of
small excitation amplitudes, one can use the harmonic
approximation. Then the time evolution of an initial con-
figuration can be determined, exactly [3]. For one-
dimensional harmonic lattices, the results are particularly
simple [4,5]. Independent of the strength and size of the
excitation, it always spreads over the full system, and
energy transportation is ballistic, provided that there is
no disorder. That infinite harmonic crystals are ergodic,
in general, has been proven rigorously [6]. If the excitation
amplitude increases, anharmonicity gets important.

Let us neglect any disorder, but taking anharmonic
interactions into account. Discreteness of the lattice com-
bined with anharmonicity allows for the existence of lo-
calized periodic vibrations, called discrete breathers (DB).
For reviews, see Ref. [7]. Their existence suggests that
under certain conditions a localized excitation may con-
verge to a DB, whereby suppressing complete energy
spreading. Indeed, numerical solutions of the discrete non-
linear Schrödinger equation (DNLS) [8] and references
wherein, the Klein Gordon chain (KG) [9], and the �-
Fermi-Pasta-Ulam chain (FPU) [10,11] demonstrate gen-
eration of DB and their role for slow energy relaxation.

Particularly, the numerical results in Refs. [8,11] give
evidence that DB generation from an initially localized
excitation requires an excitation amplitude which is large
enough. This has been supported by analytical studies of
DNLS and its single impurity version [12]. Concerning
analytical results, a little is known, only [13–15]. Recently,
it was proven for a rather general DNLS (even including
disorder) that the energy spreads incompletely, provided
that the norm which is a measure of anharmonicity is large
enough [15]. This proof is based on the existence of two
conserved quantities, the energy and the norm.
The main questions which now arise are: Does energy

localization need the existence of more than one conser-
vation law? Is there a sharp transition between complete
and incomplete energy spreading? If so, what are proper-
ties characterizing such a transition? To explore these
questions is our main motivation. Let us consider, e.g.,
the �-FPU model. In case that the energy delocalizes
completely, one can linearize the equation of motion at
large times leading to the harmonic chain, which is exactly
solvable. If it does not, it may converge to a DB. Since the
amplitude of DB decays exponentially, one may linearize
again, however, outside the center of the DB. Idealizing
this situation, we consider a reduced FPU-chain with one
anharmonic bond, only. The corresponding classical
Hamiltonian for N particles with mass m and open bound-
ary condition is as follows:

H ¼ XN
n¼1

1

2m
p2
n þ C

2

XN�1

n¼1;ðn�MÞ
ðxnþ1 � xn � anÞ2

þ VðxMþ1 � xMÞ (1)

where C> 0 is the elastic constant and an the equilibrium
length of the n-th bond. VðqÞ is chosen such that V has a
single minimum at qmin ¼ 0with V 00ðqminÞ ¼ C. This rules
out localized phonon modes of the linearized equation of
motion. In addition, we will assume that V 00ðqÞ is increas-
ing with increasing jq� qminj. H is translationally invari-
ant. After separation of c.o.m and introducing relative
coordinates qn ¼ xnþ1 � xn � an and their conjugate mo-

PRL 101, 124101 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

19 SEPTEMBER 2008

0031-9007=08=101(12)=124101(4) 124101-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.124101


menta �n, the harmonic part of Eq. (1) can be transformed
to normal coordinates fQL

�; P
L
� g and fQR

�; P
R
�g for the left

(1 � n � M� 1) and right (Mþ 1 � n � N) harmonic
part of the chain. Skipping the c.o.m.-energy, this yields

H ¼ Hharm þHanh þHint (2)

with Hanh ¼ 1
m�

2
M þ VðqMÞ the Hamiltonian for the iso-

lated anharmonic bond, the harmonic Hamiltonian Hharm,
and Hint containing the interaction of the anharmonic bond
with the harmonic degrees of freedom (d.o.f.). Hamiltonian
(2) is the only conserved quantity after separation of c.o.m.
Since the equation of motion is linear in the harmonic
d.o.f., these can be exactly eliminated. This leads for N !
1 and M ¼ OðNÞ to the nonlinear integro-differential
equation

€qð�Þ þ 1

2C
V0½qð�Þ� �

Z �

0
d�0kð�� �0Þ 1

C
V 0½qð�0Þ� ¼ 0

(3)

where the index M has been dropped for convenience.
QL

�ð0Þ � 0, PL
�ð0Þ � 0 and QR

�ð0Þ � 0, PR
�ð0Þ � 0 were

chosen as initial conditions. � ¼ !0t is a dimensionless

time and !0 ¼ 2ðC=mÞ1=2 the upper phonon band edge.
The lower edge is at zero, due to translation invariance.

The memory kernel is given by kð�Þ ¼ � _k1ð�Þ where
k1ð�Þ ¼ J1ð�Þ=� with Jn the Bessel function of order n.
Having determined for given initial conditions qð0Þ and
_qð0Þ a solution qð�Þ of Eq. (3), one obtains the harmonic
nearest-neighbor bond coordinates qnð�Þ from

qnð�Þ ¼
Z �

0
d�0GjM�njð�� �0Þ 1

C
V 0½qð�0Þ�; n � M

(4)

with the Green function Gnð�Þ ¼ 2nJ2nð�Þ=�. As initially
localized excitation, we choose qð0Þ ¼ A and _qð0Þ ¼ 0.
Use of a ‘‘velocity excitation’’ qð0Þ ¼ 0, _qð0Þ ¼ B will not
change our results qualitatively. With this initial condition
in mind, the conservation of the total energy implies that
jqð�Þj<A for all � > 0.

As well known, elimination of a macroscopic number of
d.o.f. induces dissipation. The frequency dependent damp-
ing constant �ð!Þ follows from

�ð!Þ ¼ lim
"!0

1

!
=½k̂ð!þ i"Þ� ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
; j!j< 1

0; j!j � 1

(5)

with ! measured in units of !0 and k̂ the Laplace trans-
form of kð�Þ. This exact result is obvious. For j!j< 1, i.e.,
for frequencies within the phonon band, the corresponding
modes will be damped and consequently decay to zero,
whereas all modes with frequency above that band will be
undamped. If the anharmonic bond is isolated, i.e., the
integral term in Eq. (3) is absent, qð�Þ will perform peri-
odic oscillations with frequency �0ðAÞ, depending on the

amplitude A. Because of V 00ðqminÞ ¼ C, it follows for A !
0 that �0ðAÞ ! 1=

ffiffiffi
2

p
in units of !0. This frequency is

within the phonon band. Since we have chosen a ‘‘hard’’
potential, i.e., d�0ðAÞ=dA > 0, there will be a critical

amplitude Að0Þ
c such that �0ðAÞ touches the upper phonon

band edge:

�0ðAð0Þ
c Þ ¼ 1: (6)

Accordingly, one may speculate that for A < Að0Þ
c , the

initial excitation will completely delocalize and will con-

verge to a breather for A > Að0Þ
c . In the following, we will

chose a symmetric potential VðxÞ=C ¼ 1
2 x

2 þ 1
4 x

4 for sim-

plicity. x can be scaled such that the prefactor of the quartic
term equals 1=4. In that case, it is

�0ðAÞ ¼ �

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ A2

p
=K½�A2=ð2þ A2Þ� (7)

withKðmÞ the complete elliptic integral of first kind. Then,
Eq. (6) yields

Að0Þ
c ffi 1:16715: (8)

In order to check the validity of our speculation above,
we determine first the so-called limiting equation for the
asymptotic solution q1ð�Þ ¼ lim�!1qð�þ�Þ [16]. The
Laplace transform of Eq. (3) taking into account the initial
conditions can be solved for the Laplace transform q̂ðzÞ of
qð�Þ as function of bq3ðzÞ. Transforming back to time re-
gime yields

qð�Þ ¼ AJ0ð�Þ �
Z �

0
d�0J1ð�� �0Þq3ð�0Þ; (9)

which is equivalent to Eq. (3), as can be proven. For the
pure harmonic chain, i.e., neglecting the nonlinear term,
we obtain directly qharmð�Þ ¼ AJ0ð�Þ, as is well known. It
is straightforward to derive the limiting equation

q1ð�Þ ¼ �
Z �

�1
d�0J1ð�� �0Þq31ð�0Þ: (10)

Since q1ð�Þ is an asymptotic solution not possessing a
relaxing component, its Fourier transform ~q1ð!Þ can not

have an absolutely continuous part ~qðcÞ1 ð!Þ. If it would, its
contribution qðcÞ1 ð�Þ to q1ð�Þ would relax to zero for � !
1. Excluding a singular continuous component (which
may occur for disordered systems at the mobility edge),
~q1ð!Þ must have a discrete support, i.e., q1ð�Þ is either
constant, periodic, or quasiperiodic. If it is quasiperiodic,
then there are at least two incommensurate frequencies !1

and !2. The anharmonicity generates Fourier modes with
frequencies m1!1 þm2!2. There exists an infinite num-
ber of integer pairs (m1, m2) such that m1!1 þm2!2 is
within the phonon band. Therefore, these modes are
damped [cf. Eq. (5)] and converge to zero. Accordingly,
consistent with our numerical results below, Eq. (10) has
two kind of solutions, only: A static one qstatic1 ð�Þ � q1 and
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a periodic one q
periodic
1 ð�þ �0Þ � q

periodic
1 ð�Þwith 2�=�0 >

1 in order to avoid an overlap with the phonon frequencies
j!j � 1. Substituting qstatic1 ð�Þ � q1 into Eq. (10) yields
the single solution qstatic1 ð�Þ � 0.

So far, we have argued that two types of asymptotic
solutions exist, a static and a periodic one. In order to
investigate the existence of a critical amplitude Ac, we
solve Eq. (9) iteratively. With the asymptotic behavior of
J1, we arrive at

qð�Þ ffi A

ffiffiffiffi
2

�

s �
ð�=�sÞ�ð1=2Þ sin

�
�� �

4

�
� ð�=�cÞ�ð1=2Þ

� cos

�
�� �

4

��
(11)

with relaxation times

��ðAÞ ¼ ½X1
n¼0

ð�1Þn�ð�Þ
n A2n�2; � ¼ s; c: (12)

�ð�Þ
n are given by n-fold integrals over products of J1 and

J0. Equation (11) with ��ðAÞ from Eq. (12) is a formal
result for qð�Þ represented by a power series in A. It is a
physical solution only if the infinite sums in Eq. (12) do
exist. The critical value Ac is such that this is true for A <
Ac. Then, it is

Ac ¼ minfAðcÞ
c ; AðsÞ

c g; Að�Þ
c ¼ lim

n!1A
ð�Þ
n ;

Að�Þ
n ¼ j�ð�Þ

n =�ð�Þ
nþ1j1=2; � ¼ s; c:

(13)

An analytical calculation of these integrals seems impos-

sible. Therefore, it is done numerically, which leads to Að�Þ
n

shown in Fig. 1 up to n ¼ 10. For n > 10, the numerical
errors become significant. This result gives evidence that

Ac is close to A
ð0Þ
c . For A < Ac, the asymptotic time depen-

dence of qð�Þ is similar to that of the harmonic solution
AJ0ð�Þ, however, with a different phase and a renormalized

relaxation time �relðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2sðAÞ þ �2cðAÞ

p
, which diverges

at Ac. This behavior of �relðAÞ follows from the divergence
of the alternating sums [cf. Eq. (12)] due to the quantitative

difference of �ð�Þ
n for n even and n odd, which also leads to

the ‘‘oscillations’’ of Að�Þ
n in Fig. 1. According to Eq. (11),

qð�Þ decays by an inverse square root law, as also observed
for the original �-FPU chain [10].
In order to check these results and to access A> Ac, we

have solved Eq. (3) numerically up to �max ¼ 105 using an
integration step of h ¼ 0:05. Figure 2 depicts qenvð�i;AÞ
for �i � 103, 104 and 105 where qenvð�;AÞ is the envelope
function of jqð�Þj for given A. With increasing �i, a clear
sharpening of the transition is found at Anum

c ffi 1:181, like
for a second order phase transition with finite size effects.

Anum
c differs from Að0Þ

c by about 1.2%. The frequency
�numðAÞ close to �max is shown in Fig. 2. For A < Anum

c ,
we have�numðAÞ ffi 1 and for A > Anum

c , it is well approxi-
mated by �0ðAÞ for the isolated bond. However, for A
above but close to Anum

c , the discrepancies are about 2%,
whereas for A 	 Anum

c , they disappear. Whether the small

deviation of Anum
c and �num from Að0Þ

c and �0ðAÞ, respec-
tively, is genuine or stems from numerical inaccuracy is

unclear. Hence, it is not obvious that Ac ¼ Að0Þ
c . For A >

Anum
c , the initial excitation indeed converges to a DB with

frequency �numðAÞ. Figure 3 shows the numerically deter-
mined relaxation time �relðAÞ for A < Anum

c , and for A >
Anum
c the inverse modulation frequency 2�=!modðAÞ of a

modulation of the DB, which is observed numerically. For
� ! 1, the modulation amplitude decays to zero. �rel has
been determined from the criterion qenvð�relÞ ¼ A=10.
Both �rel and 2�=!mod seem to diverge at Anum

c by a power
law with an exponent� 0:61 and� 0:87, respectively, (see
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FIG. 1 (color online). n-dependence of Að�Þ
n from Eq. (13) for

� ¼ s, c. The dashed line represents Að0Þ
c ffi 1:16715

[cf. Eq. (8)].
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FIG. 2 (color online). Top panel: A-dependence of qenvð�iÞ for
�i � 103 (circles), 104 (plus signs), and 105 (crosses) time units.
The inset demonstrates the asymptotic behavior qenvð�iÞ 
 A
(solid line). Bottom panel: DB frequency �numðAÞ at �i � 105

time units as function of A. The arrow indicates the critical value

Að0Þ
c from Eq. (8) and the dashed line Anum

c ffi 1:181. The inset
shows the asymptotic A-dependence �ðAÞ 
 A (solid line).
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inset of Fig. 3). A power law divergence �relðAÞ 
 ðAc �
AÞ�� implies that �ð�Þ

n 
 ðAcÞ�nn�ð1��=2Þ for n ! 1.
Whereas the exponential factor is strongly supported by
our calculations, the validity of the power law part can not
be checked due to the limitation n � 10.

Finally, we have analytically determined the moments

m
ðpotÞ
‘ ð�Þ ¼ P

N
n¼1ðn�MÞ‘eðpotÞn ð�Þ, ‘ ¼ 1; 2; 3; . . . of the

potential energy profile e
ðpotÞ
n ð�Þ in the thermodynamic

limit. As a result, we find

m
ðpotÞ
‘ ð�Þ ¼

Z �

0
d�1

Z �

0
d�2K‘ð�� �1; �� �2Þ

� 1

C
V0½qð�1Þ� 1CV0½qð�2Þ�: (14)

Let us restrict to ‘ ¼ 2. K2ðx; yÞ can be calculated analyti-
cally and expressed by J1ðx� yÞ and J2ðx� yÞ. Taking
into account the asymptotic expansion of Jn, we find

mðpotÞ
2 ð�Þ 
 �2 for � ! 1, for all A. Hence, the energy

transportation is ballistic. This is expected since the trans-
portation is within the half infinite left and right harmonic
part of the chain. Using the profile of the kinetic energy
will not change these results.

To summarize, based on combined analytical and nu-
merical calculations of a reduced �-FPU chain where the
anharmonicity is restricted to a single bond, we have
presented clear evidence for the existence of a critical
amplitude Ac which separates delocalization from local-
ization. This demonstrates that a single conservation law is
sufficient for such a transition. Anum

c differs slightly from

Að0Þ
c . Therefore, it is not clear whether Ac coincides with

Að0Þ
c or not. Of course, no compelling arguments exist for

their equality. In addition, the divergence of the iteration
series is the mathematical origin of the transition at Ac and
leads for A< Ac to a renormalized (due to anharmonicity)
relaxation time �rel which diverges at Ac. The numerical
solution suggests a power law divergence with exponent
smaller then one. Above Ac, it yields the convergence
towards a DB with frequency very close to �0ðAÞ of the
isolated bond. Finally, from the large � behavior of the
second moment m2ð�Þ, we find ballistic energy transpor-
tation for A< Anum

c and A> Anum
c . This proves that a

divergence of m2ð�Þ is not necessarily an indication of
complete energy spreading, as it has been assumed for
DNLS [17], supporting the conclusion in [15].
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S. Aubry, V. Bach, N. Blümer, and S. Flach for stimulating
discussions.

[1] W. Götze, Complex Dynamics of Glass-Forming Liquids,
A Mode-Coupling Theory (Oxford University Press,
Oxford, UK, 2008).

[2] S. P. Das, Rev. Mod. Phys. 76, 785 (2004).
[3] W.R. Hamilton, Proc. R. Irish Acad., Sect. A 1, 341

(1841).
[4] G. S. Zavt et al., Phys. Rev. E 47, 4108 (1993).
[5] P. K. Datta and K. Kundu, Phys. Rev. B 51, 6287 (1995).
[6] J. L. van Hemmen, Lecture Notes (Springer, New York,

1979), Vol. 93.
[7] S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998);

S. Aubry, Physica D (Amsterdam) 216, 1 (2006).
[8] M. I. Molina and G. P. Tsironis, Physica D (Amsterdam)

65, 267 (1993); L. J. Bernstein et al., Phys. Lett. A 181,
135 (1993); M. Johansson et al., Phys. Rev. B 52, 231
(1995).

[9] G. P. Tsironis and S. Aubry, Phys. Rev. Lett. 77, 5225
(1996).

[10] F. Piazza et al., J. Phys. A 34, 9803 (2001).
[11] R. Reigada et al., Phys. Rev. E 66, 046607 (2002).
[12] J. Dorignac, J. Zhou, and D.K. Campbell, Physica D

(Amsterdam) 237, 486 (2008).
[13] S. Flach et al., Phys. Rev. Lett. 78, 1207 (1997); M. I.

Weinstein, Nonlinearity 12, 673 (1999).
[14] A. Stefanov and P.G. Kevrekidis, Nonlinearity 18, 1841

(2005).
[15] G. Kopidakis et al., Phys. Rev. Lett. 100, 084103 (2008).
[16] R. K. Miller, Nonlinear Volterra Integral Equations (W. A.

Benjamin, New York, 1971).
[17] A. S. Pikovsky and D. L. Skepelyansky, Phys. Rev. Lett.

100, 094101 (2008).

1.16 1.165 1.17 1.175 1.18 1.185 1.19
A

0

5000

10000

15000

20000
τ τrel 2π/ωmod

-3.5 -3 -2.5 -2 -1.5

log10(|A-Ac
num

|)

3.2

3.6

4

4.4

lo
g 10

(τ
)

Ac
num

FIG. 3 (color online). Renormalized relaxation time �rel
(circles) and modulation period 2�=!mod (crosses) as function
of A. The dashed line indicates Anum

c ffi 1:181. The solid lines
represent power law fits of �rel and 2�=!mod with exponents 0.61
and 0.87, respectively, which are supported by the log-log plots
of the inset.
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