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Exchanging light pulses to perform accurate space-time positioning is a paradigmatic issue of physics.

It is ultimately limited by the quantum nature of light, which introduces fluctuations in the optical

measurements and leads to the so-called standard quantum limit (SQL). We propose a new scheme

combining homodyne detection and mode-locked femtosecond lasers that lead to a new SQL in time

transfer, potentially reaching the yoctosecond range (10�21–10�24 s). We demonstrate that this already

very low SQL can be overcome using appropriately multimode squeezed light. Benefitting from the large

number of photons and from the optimal choice of both the detection strategy and of the quantum

resource, the proposed scheme represents a significant potential improvement in space-time positioning.
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Accurate spacetime positioning has become a crucial
issue for future space experiments which require increas-
ing resolution over large distances (see, for example, [1]).
The position in space (by ranging to a reference) or time
(by clock synchronization with a reference) between two
observers A and B may be achieved through the Einstein
protocol which consists in repeatedly exchanging light
pulses [2].

The basic principle relies on the property that, in the
absence of dispersion, each pulse carries along its propa-
gation a mean light cone variable u ¼ t� x=c which re-
mains constant so that the measurement of the time of
arrival of each pulse allows either a determination of
distance or clock synchronization. The generic situation
considered in this Letter is the following (see Fig. 1):
observer A regularly emits light pulses at a rate synchro-
nized to its local clock; B receives these pulses and deter-
mines their times of arrival by measuring the difference
between the arrival times of the incoming light pulses and
light pulses delivered by a source located in B and syn-
chronized to a reference clock in B. The accuracy of this
measurement relies therefore on the precision of the clocks
in A and B and on the sensitivity of the determination of the
delay between two light pulses, that we will show how to
optimize in the present Letter.

Such a delay can be measured by at least two ways: the
first one consists in measuring the arrival time of the
maximum of the pulse envelope. We will refer to this
procedure as an incoherent time-of-flight (tof) measure-
ment. The second method consists in using the information
contained in the phase of the electric field oscillation by
making an interference pattern between the pulses arriving
from A and a local oscillator (LO) derived from the local
clock in B. This pattern will give the desired information if
the phase of the pulse coming from A and the phase of the
LO in B are locked to their respective local clocks. This
method will be referred to as a coherent phase (ph)
measurement.

These measurement schemes suffer from quantum limits
associated with the quantum nature of light [3]. For a
coherent light pulse of central frequency !0 and frequency
spread �!, quantum fluctuations lead to the so-called
standard quantum limit (SQL) of ranging for either time-
of-flight [4] or phase [5,6] measurements. Those expres-
sions are given by

ð�uÞtofSQL ¼ 1

2�!
ffiffiffiffi
N

p ; ð�uÞphSQL ¼ 1

2!0

ffiffiffiffi
N

p : (1)

Where N is the total number of photons measured in the

FIG. 1 (color online). (a) General scheme of a one way time
transfer. (b) Spacetime representation in the reference frame of
observer B (xB ¼ 0). A modification �xA of the position of the
observer A leads to a modification �u ¼ ��xA=c of the light
cone variable that is emitted towards B and, consequently, leads
to non regular time of arrival in B.
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experiment during the detection time. Let us briefly discuss
those two SQL. First, it is clear on these expressions that
the SQL can be as small as needed if one can use intense
enough light, but there are obvious practical limitations to
the energy carried by the light pulses. In contrast, isolated
photons give rise to very low photon fluxes, and the corre-
sponding SQL is very quickly a limitation of experimental
protocols using photon-counting techniques. The expres-
sions also show that optical frequencies lead to much
smaller SQL than microwave frequencies because of a
larger !0 and �!. Finally, as !0 > �!, the phase method
has a better ultimate sensitivity than the time-of-flight
technique but requires highly spatially and temporally
coherent sources.

For the time being, the resolution in time transfer is
limited by classical technical noises so that the previous
SQL are not yet a limitation in time transfer. Nevertheless,
with the recent developments in stabilization of frequency
combs referenced to optical standard, it is getting closer
and closer to these quantum limits [7,8]. Both for a funda-
mental point of view and for future experiments, it is
therefore necessary to compute the ultimate sensitivity in
time transfer with coherent pulses, situation epitomized by
a mode-locked femtosecond laser. Indeed, it combines both
a time-of-flight information in their envelope and a well-
stabilized phase information inside the envelope.

In order to compute the SQL in timing, we write the

positive frequency electric field operator ÊðþÞ
ð0Þ emitted by A

in the absence of any perturbations as a decomposition in
temporal modes:

Ê ðþÞ
ð0Þ ðuÞ ¼ E

X
n

ânvnðuÞ; E ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!0

2"0cT

s
; (2)

where T is the measurement time. The orthonormal tem-
poral modes vnðuÞ will be written as a (complex) time-
varying amplitude gnðuÞmultiplied by a propagation phase
factor of the form e�i!0u:

vnðuÞ ¼ gnðuÞe�i!0u: (3)

The annihilation operator corresponding to those modes
are noted ân. Without any loss of generality, we can
appropriately choose the mode basis such that the mean

value of the electric field operator ÊðþÞ
ð0Þ ðuÞ is proportional to

v0, namely hÊðþÞ
ð0Þ ðuÞi ¼ E

ffiffiffiffi
N

p
ei�v0ðuÞ, with N the mean

number of photon and � a global phase [9].
Now, any variation �u of the mean light cone variable,

caused, for example, by a distance change between A and
B, leads to a modification of the field received in B which

reads ÊðþÞðuÞ ¼ ÊðþÞ
ð0Þ ðu��uÞ (see Fig. 1). The temporal

mode corresponding to this field can be decomposed as
follows if the perturbation �u is small:

v0ðu� �uÞ � v0ðuÞ ��u
dv0ðuÞ
du

��������u¼0

¼ v0ðuÞ þ�u

u0
w1ðuÞ: (4)

The constant u0 ensures the normalization of the new mode
w1ðuÞ. The latter one will be called the timing mode
because it carries the timing signal �u. For pulses of

frequency spread �! [10], u0 is given by u0 ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ �!2
q

and the expression of the timing mode is

w1ðuÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p ði�v0ðuÞ þ v1ðuÞÞ; � ¼ !0

�!
: (5)

� is roughly equal to the number of field oscillations within
the pulse, which can be as small as a few units for femto-
second pulses. The timing modew1 contains two terms: the
first one, namely iv0, gives a contribution to the timing
signal via a phase change (interferometric method of rang-
ing). The second one, namely v1, is normalized and or-
thogonal to v0 so that it will be taken as the second mode of
the basis ðvnÞn. It reads

v1ðuÞ ¼ � 1

�!

dg0ðuÞ
du

e�i!0u: (6)

This mode gives a contribution to the timing signal via a
time shift of the pulse envelope (time-of-flight technique).
The latter mode is represented in Fig. 2 and is the temporal
analog of the spatial TEM01 Gaussian mode when the
emitted pulses are Gaussian.
The timing signal �u can be retrieved by projecting

v0ðu��uÞ on the timing mode w1ðuÞ. This can be done
using the balanced homodyne detection scheme repre-
sented in Fig. 2 where the input pulses are mixed with a

LO put in the timing mode w1, so that hÊþ
LOðuÞi ¼

E
ffiffiffiffiffiffiffiffiffi
NLO

p
ei�LOw1ðuÞ, with NLO the mean number of photon

in the LO field and �LO its phase. Denoting ðb̂nÞn the
annihilation operators for the LO, the homodyne signal

reads D̂ ¼ jEj2Pnðâyn b̂n þ b̂yn ânÞ. The mean signal of the
balanced homodyne detection when a timing offset �u is
present, then reads

FIG. 2. Proposed balanced homodyne scheme to reach optimal
detection in ranging measurement. The pulses synchronized on
the clock in A are measured in B by homodyne detection with
pulses synchronized on the local clock and in an adequate
temporal mode (here is represented only the part v1 of the LO
for clarity).
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hD̂i ¼ 2jEj2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
NNLO

p �
�u

u0
cosð�� �LOÞ

þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p sinð�� �LOÞ
�
: (7)

We assume from now on that, as usual, the LO is much
more intense than the input field. The general case can be
treated without difficulty. In this situation, the variance of
the balanced homodyne signal, taken for �u ¼ 0, is given
by

�2
D̂
� h�D̂2i ¼ jEj4NLO

1þ �2
ð�2�2

P̂0
þ �2

Q̂1
Þ; (8)

where �2
P̂0

and �2
Q̂1

are the variances of the quadrature

operators P̂0 (phase operator of mode v0) and Q̂1 (ampli-
tude operator of mode v1) of the input field

P̂0 ¼ iðây0ei�LO � â0e
�i�LOÞ

and Q̂1 ¼ ây1e
i�LO þ â1e

�i�LO :
(9)

The SQL is then obtained as the smallest �u that can be
measured using shot noise limited coherent light (�2

P̂0
¼

�2
Q̂1

¼ 1), assuming a signal to noise ratio equal to one

(hD̂i ¼ �D̂). It is obtained for � ¼ �LO and is given by

ð�uÞSQL ¼ 1

2
ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ �!2
q : (10)

The expression (10) is one of the main results of this Letter
and gives a new SQL in timing. The latter is lower than
both the SQL in time-of-flight and phase measurements
[see Eq. (1)], which obviously are special cases of our
scheme when the LO is either in the iv0 or v1 mode.
This means that the proposed balanced homodyne detec-
tion scheme has a better sensitivity than existing schemes
based on either time-of-flight or interferometric measure-
ment. The improvement comes from the fact that coherent
pulses, in addition to their phase, carries a time-of-flight
information in their time-varying envelope. Both pieces of
information are read by the balanced homodyne detection
if the LO is shaped in the modew1. Note that this shape can
be obtained experimentally with presently available com-
mercial pulse shaper [11]. Let us stress that such optimized
measurements have already been successfully proposed
and numerically tested for pure phase measurement [12]
and even experimentally employed in the spatial domain to
measure transverse beam displacement and tilt [13].

A natural question is to know whether it is possible to
reach still better sensitivity on the same beam but by using
another measurement strategy. An answer can be provided
in the context of information theory with the help of the
Cramer-Rao bound [14], which gives the smallest measur-
able delay �u that can be achieved in the presence of a
given distribution of noise. This bound has the property of
being independent of the measurement strategy and de-
pends only on the noise of the incoming signal. A calcu-

lation of the Cramer-Rao bound, analogous to the one
detailed in [15,16] proves that using coherent light, this
bound is precisely equal to the expression (10) of ð�uÞSQL.
We are therefore sure that no other measurement scheme
will reach a better accuracy than the introduced balanced
homodyne detection and in this sense this scheme is said to
be efficient.
Obviously the SQL (10) is the fundamental limit when

one restricts oneself to the use of classical states of light
and coherent states, as proven with the previous standard
Cramer-Rao bound. Nevertheless, it is well known that it
can be beaten using quantum resources [17–19]. For ex-
ample, the improvement of the sensitivity in interferomet-
ric measurements using squeezed light has been proposed
[5,6], observed experimentally [20–22], and will be cer-
tainly practically implemented in the future generations of
interferometric detectors of gravitational waves [23]. The
use of an entangled photon source to improve time-of-
flight ranging measurements in the photon-counting re-
gime has been also proposed [4,24] and experimentally
demonstrated [25] at a picosecond level of timing sensi-
tivity. We propose here to improve the scheme introduced
previously by using appropriately squeezed light.
Inspection of Eq. (8) immediately shows that in the case

of a strong LO the signal to noise ratio is increased if the
noise of the incoming mode w1 is below the shot noise.
This can be obtained if squeezing of the input field modes

v0 and v1 is achieved along the quadratures P̂0 and Q̂1,
respectively. If we assume that the squeezing coefficient is
equal for the two states, namely �P̂0

¼ �Q̂1
¼ e�r (r � 1

being the squeezing parameter), then the new minimum
measurable value of �u is given by

ð�uÞsqueezing ¼ 1

2
ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ �!2
q e�r: (11)

This minimum resolvable �u is thus reduced below the
SQL (10) by the factor er. Note that the expression for the

general case of different squeezing along P̂0 and Q̂1, as
well as a LO not supposed strong, can be obtained straight-
forwardly from the equations given in the Letter.
Improving the signal to noise ratio with nonclassical

light therefore requires to generate an input beam with
the proper squeezed quadratures: the phase of the mean
field v0and the amplitude of the v1 vacuum mode. Such a
multimode beam has already been performed in the spatial
domain [13], and similar techniques could, in principle, be
implemented in the time domain. For instance, one could
use a synchronously pumped optical parametric oscillator
(SPOPO) which naturally produces the desired squeezed
temporal modes with a femtosecond pump beam [26].
Experimentally, squeezing of pulses have already been
performed either with the Kerr medium [27] or using para-
metric down-conversion and mode-locked lasers [28,29].
Using the best present technology, the noise reduction
factor can reach 10 dB [30,31], i.e., a factor of 10 improve-
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ment, even at low noise frequencies. The advantage of
squeezing over the other proposed quantum techniques
such as entanglement is that it can be used together with
an intense beam for which the SQL is already very low. In
addition the squeezed beam travels along with the signal
beam and therefore they both share common noises. The
main drawback of squeezing is its sensitivity to losses in
the optical system and the detectors. This means that the
technique could be used in situations where light propa-
gates in vacuum, for example, between satellites in flying
formation.

An experimental implementation of the scheme with the
aim at reaching the SQL and then observe the quantum
improvement suffers different technical challenges.
Indeed, for a P ¼ 10 mW mode-locked laser with � ’
810 nm and a 10 fs pulse duration, the SQL is equal to

ð�uÞSQL ¼ 2� 10�23 s, i.e., a noise level of 2�
10�23 s=

ffiffiffiffiffiffi
Hz

p
(20 yoctoseconds for 1 s integration time).

Reaching such a timing precision requires very stable laser
repetition rate and phase stabilization. This can be even-
tually achieved with mode-locked femtosecond lasers
which are already used for absolute and relative ranging
in different measurement schemes [32–35]. The dominant
source of noise in Eq. (8) is given by the noise �P̂0

of the

phase of v0. Self-referencing stabilization using a f� 2f
beat allows to keep this noise to a very low level, down to

3� 10�6 rad=
ffiffiffiffiffiffi
Hz

p
at 105 Hz with state-of-the-art stabili-

zation techniques [36,37], corresponding to a timing noise

of 10�21 s=
ffiffiffiffiffiffi
Hz

p
at 105 Hz. Concerning the repetition rate

Trep, the latter can be locked to an optical reference, and

current technology leads to a time jitter noise level of

10�18 s=
ffiffiffiffiffiffi
Hz

p
at 105 Hz [38–40].
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