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The discrete energies of a scattering Hamiltonian calculated under the influence of an artificial

confining potential of almost arbitrary functional form can be used to determine its phase shifts. The

method exploits the result that two short-range Hamiltonians having the same energy will have the same

phase shifts upon removal of the confining potential. An initial verification is performed on a simple

model problem. Then the stochastic variational method is used to determine the energies of the confined

e�-He 2Se system and thus determine the low energy phase shifts.

DOI: 10.1103/PhysRevLett.101.123201 PACS numbers: 34.10.+x, 03.65.Nk, 34.80.Bm

A recurrent theme in the quantum theory of scattering is
the desire to develop procedures to take advantage of
bound state methods based on square integrable (L2)
wave functions. One reason for this is the wish to adapt
existing bound state program packages to the calculation of
continuum states. Some of the methods using L2 functions
include the complex absorbing potential approach [1],
stabilization approaches [2,3], and the many different types
of R-matrix methods [4–6] including the box-variational
method [7], which is used for quantum Monte Carlo scat-
tering calculations [8].

The present Letter describes a novel strategy to calculate
low energy elastic scattering. An artificial confining poten-
tial is added to the scattering Hamiltonian, and the discrete
energies of this modified system are determined. We then
show that two short-range potentials with the same ener-
gies in the confining potential have the same phase shifts
when the confining potential is removed. This is similar to
the box-variational method [7,9], where the energy inside
an infinite-walled box is related to the phase shift. In its
simplest form, the box-variational method requires the
wave function, and thus the basis functions, to have a
zero at the boundary (note that the logarithmic derivative
at the boundary can, in principle, be set to any value). The
‘ ¼ 0 phase shifts for the nth positive energy state with
energy En are then given by the identity �n ¼ n��
R

ffiffiffiffiffiffiffiffiffi
2En

p
[7]. In the present approach, almost any square

integrable basis function can be used. Initially, we validate
our strategy for scattering with a simple exponential po-
tential. We then determine the low energy phase shifts for
e�-He scattering to a higher degree of precision than any
previous work [10–12] by using an explicitly correlated
basis to generate the e�-He energies inside the confining
potential.

The problem is to solve the Schrödinger equation

�
�r2

2
þ VðrÞ

�
�ðrÞ ¼ E�ðrÞ (1)

for E> 0. The central potential VðrÞ will be assumed to be
zero beyond some finite radius, say, R0. Now consider the
related equation

�
�r2

2
þ VðrÞ þWCPðrÞ

�
�ðrÞ ¼ E�ðrÞ; (2)

whereWCP is a confining potential and E is defined relative
to Vðr! 1Þ. This potential has the property thatWCP � E
as r! 1. We chooseWCP �OðrnÞ (n > 1) as r! 1. The
potential WCPðrÞ should have an analytic form which has
easy to evaluate matrix elements. Second, WCPðrÞ should
be negligible for r < R0. If these conditions are met, then it
can be shown that the discrete energies Ei of the solution of
Eq. (2) can be used to determine the phase shifts of Eq. (1)
at those energies.
Consider a potential V0ðrÞ for which Eq. (2) has an

eigenvalue E0. When r > R0, the solution of Eq. (2) will
become an exponentially decreasing solution B�0ðrÞwhen
E0 < V0ðrÞ þWCPðrÞ. The amplitude B will depend on the
specifics of V0ðrÞ, but the actual radial dependence of
�0ðrÞ does not depend on the form of V0ðrÞ. Now consider
the behavior of the wave function for r < R0. One simply
integrates the Schrödinger equation outward from the ori-
gin, and, since WCPðrÞ is zero here, the functional form of
the inner wave function�0ðrÞ will not be influenced by the
form of WCPðrÞ. The eigenstate will then be

�ðrÞ ¼ A�0ðrÞ ; r < R0; �ðrÞ ¼ B�0ðrÞ ; r > R0:

(3)

The logarithmic derivatives of �0ðrÞ and �0ðrÞ will agree
at the matching radius. The constants A and B are chosen
so that the overall normalization of�ðrÞ is unity and that it
is continuous at r ¼ R0.
Now consider the solution of Eq. (1) at E ¼ E0. When

r < R0, this will simply be C�0ðrÞ since the boundary
condition at the origin depends only on E0. At the bound-
ary r ¼ R0, the phase shift � is determined from the
logarithmic derivative �:
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��ðrÞ ¼ 1

�ðrÞ
d�

dr
: (4)

There is a general functional relation between � and � that
can be expressed formally as

�ðE0Þ ¼ fð��ðR0ÞÞ: (5)

However, the logarithmic derivative of �0ðrÞ is exactly the
same as that of �0ðrÞ. The logarithmic derivative of �0ðrÞ
at r ¼ R0 is determined by E0, and its functional depen-
dence gðE0Þ does not depend on V0ðrÞ, so

��ðR0Þ ¼ ��ðR0Þ ¼ gðE0Þ: (6)

Combining Eqs. (5) and (6), one can establish a functional
relation between the energy E0 and the phase shift, i.e.,

�ðE0Þ ¼ fðgðE0ÞÞ: (7)

One consequence of Eq. (7) is that Eq. (6) has no explicit
functional dependence on the specifics of V0ðrÞ. While
gðE0Þ depends on R0, E0, and the form of WCPðrÞ, it does
not depend on V0ðrÞ. Therefore, if two potentials V0 and V1

in Eq. (2) have the same eigenenergy E0, then their phase
shifts (modulo �) will be the same at E0. Provided the two
wave functions have the same logarithmic derivative at r ¼
R0, it does not matter whether bound or continuum bound-
ary conditions are imposed.

The phase shift of the complicated many-body problem
can be determined directly from the energy of a bound state
calculation. One just constructs a model potential that
gives the same confined energy as the real many-body
problem, then the confining potential is removed, and the
model potential phase shift is computed. We call this
approach to determining the scattering wave function the
confined variational method (CVM).

This present strategy of using the energies within an
artificial confining potential can be regarded as the culmi-
nation of a number of related approaches (apart from the
box-variational method). For example, a confining poten-
tial was used to confine a scattering system, and the sto-
chastic variational method (SVM) was used to optimize a
basis of explicitly correlated Gaussians (ECGs) to describe
the interaction region [13]. The basis was then used as a
foundation for a stabilization calculation. Additionally, the
energy shifts of positive energy pseudostates were used to
tune a model potential which established the existence of a
p-wave shape resonance in eþ-Mg scattering [14]. Finally,
Guérout, Jungen, and Jungen [15] used a real confining
potential to determine the solution of the Schrödinger
equation for the internal region wave function within a
multichannel quantum defect theory formalism.

The first test is to verify whether the primary proposi-
tion, namely, two short-range potentials with the same
energy having the same phase shift, can be achieved in a
practical numerical calculation. For this test, we choose

V0ðrÞ ¼ � expð�1:4rÞ; (8)

V1ðrÞ ¼ Bð expð�r2Þ þ r expð�2rÞÞ: (9)

The potential V0ðrÞ represents the potential for some com-
plicated many-body system, and it will not always be
possible to determine its eigenenergies to infinite preci-
sion. The potential V1ðrÞ is the adjustable potential that
will be integrated to get the CVM phase shifts. The con-
fining potential was defined as

WCPðrÞ ¼ 0; r < R0; (10)

WCPðrÞ ¼ Gðr� R0Þ2; r > R0; (11)

withG set to 3� 10�4 and R0 ¼ 16. The first derivative of
the confining potential is zero at R0. The energies of ðV0 þ
WCPÞ are determined by diagonalization in a basis of
Laguerre-type orbitals (LTOs). The LTOs are defined by

��ðrÞ ¼ N�r
‘þ1 expð���rÞLð2‘þ2Þ

n��‘�1ð2��rÞ; (12)

and full details are available elsewhere [16]. The exponents
�� were set to 2.0.
The energies of the diagonalization of the lowest state of

V0 are listed in Table I. The energy for the ith eigenstate for
a basis of dimension N is denoted by Ei;N . The exact

energy of the ith eigenstate is for all practical purposes
given by Eexact;i ¼ Ei;50. Integrating the Schrödinger equa-
tion for V0 at E1;N gives �exact;1;N .

The CVM phase shifts extracted from the energy of the
ith state are denoted by �CVM;i;N . The potential V1 was

diagonalized in the same LTO basis and B adjusted until
the energy was equal to E1;N . The phase shift �CVM;i;N was

obtained by integrating V1 with the tuned value of B. The
phase shifts were also determined by evaluating the loga-
rithmic derivative (at r ¼ R0) of the wave function result-
ing from the diagonalization of V0 under WCP. This
approach is called the boundary condition (BC) method
(the phase shifts are denoted by �BC;i;N) and is essentially

the approach adopted by Guérout, Jungen, and Jungen
[15].
A striking result from Table I is the high accuracy of the

CVM phase shifts. They are in agreement with the phase
shifts obtained by integrating the Schrödinger equation for
V0ðrÞ to seven significant digits for N > 30. This accuracy
was maintained for the phase shift extracted from the
second lowest state.

TABLE I. The convergence of the energy and derived phase
shift with respect to the dimension of the LTO basis set. A
description of the phase shift entries can be found in the text.

N E1;N �exact;1;N �BC;1;N �CVM;1;N

20 0.008 105 924 660 3 0.477 396 5 0.530 962 7 0.477 394 5

25 0.006 045 691 902 6 0.431 086 4 0.493 142 2 0.431 085 8

30 0.005 629 924 168 6 0.419 939 5 0.414 794 1 0.419 939 5

40 0.005 607 701 459 6 0.419 323 0 0.419 474 8 0.419 323 0

50 0.005 607 701 142 2 0.419 323 0 0.419 357 2 0.419 323 0
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The extreme accuracy is a consequence of the varia-
tional theorem. The energy of any variational wave func-
tion is accurate to the square of the error in the wave
function, i.e., �E� ð��Þ2. The BC phase shifts in
Table I are much less accurate than the CVM phase shifts.
The BC method (and the approach of Guérout, Jungen, and
Jungen [15]) relies on the precision of the local properties
of the variational wave function and these are much less
accurate than their global properties [17].

The CVM was then applied to e�-He scattering in the
2Se symmetry. The confining potential was chosen as
WCPðrÞ ¼ 1:059 942� 10�4ðr� 18Þ2. This confining po-
tential was chosen in order to keep the energy of the second
eigenstate, i.e., E2, close to E0 þ 0:020 a:u:, where E0 is
the He ground state energy. This corresponds to k ¼
0:2a�1

0 and made it easier to compare with previous cal-

culations [10–12]. The imposition of the confining poten-
tial would increase the He energy of�2:903 724 377 0 a:u:
[18] by less than 10�15 a:u: The energies of the two lowest
states were generated with the SVM which solves the
Schrödinger equation in a basis of ECGs [13,19,20]. The
energy being optimized was the mean of the two lowest
energies, i.e., Eopt ¼ ðE1 þ E2Þ=2. Table II gives the en-

ergies of the second lowest state at various stages of the
energy optimization.

The e�-He potential has a long-range polarization po-
tential of the form Vpol � ��d=ð2r4Þ. Helium has a dipole

polarizability of 1:3832a30 [21]. The phase shift obtained

from the CVM process strictly gives the phase shift at R0.
The value of Vpolðr ¼ R0Þ is �6:6� 10�6 a:u: This can

affect the derived phase shift at k � 0:2a�1
0 at the 0.1%

level. Polarization effects were included by using a tuning
potential with the correct long-range form, specifically,

VHeðrÞ ¼ B expð�2rÞ � �d
2r4

½1� expð�r6=�6Þ�; (13)

where the parameter � was set to � ¼ 3a0. The formal
justification presented earlier relies only on WCPðrÞ being
zero for r < R0. The actual scattering potential can have a
long-range component provided this component is also
present in the tuning potential.
Table II also gives the phase shifts of the second lowest

state. The parameter B of Eq. (13) was adjusted until the
energy of VHe under WCP was equal to ðEi;N þ E0Þ, where
E0 is the energy of the He ground state. The continuum
Schrödinger equation for Eq. (13) was integrated to 500a0
to give the phase shift �CVM;2;N .

Additional ECGs designed to represent an electron mov-
ing in the static potential of the He ground state were used
to augment the basis and thus accelerate convergence.
These basis functions were

�i
out ¼  Heðr1; r2Þ expð�1

2�ir
2
3Þ; (14)

 Heðr1; r2Þ ¼
X

k

dkF
He
k ðr1; r2Þ: (15)

The He ground wave function was written as a linear
combination of 90 ECGs (FHe

k ). This basis gave

�2:903 724 33 a:u: for the He ground state energy. A total
of 40 electron Gaussians, defined by the relation �i ¼
19:54=1:45i�1, multiplying the He ground state wave func-
tion were included. The energies E0

2;N and derived phase

shifts (�0
CVM;2;N) for the augmented basis are given in

Table II.
The usefulness of the augmented basis is seen in Fig. 1,

where the phase shifts �CVM and �0
CVM for the different-

sized basis sets are plotted. The horizontal axis gives the
difference �E ¼ jE0

2;N � E2;Nj. This difference �E will

tend to zero as the basis size increases. Continuation of the
series of calculations would result in �CVM and �0

CVM

tending to a common intercept. The best phase shift from
an explicit calculation was �0

CVM for the N ¼ 1240 basis,

which gave �0:265 07 rad. The convergence pattern ex-
hibited in Fig. 1 suggests that this phase shift is convergedTABLE II. The convergence of the second lowest eigenstate of

the confined e�-He system for the 2Se symmetry as a function of
the number of ECGs N. The asymptotic momentum of the
system k and derived phase shifts are also listed.

N E2;N (a.u.) k2;N (a�1
0 ) �CVM;2;N

600 �2:883 716 39 0.200 039 9 �0:266 58
800 �2:883 720 89 0.200 017 4 �0:265 72
1000 �2:883 722 51 0.200 009 3 �0:265 40
1200 �2:883 723 23 0.200 005 7 �0:265 26

With augmented basis

640 �2:883 723 28 0.200 005 5 �0:265 25
840 �2:883 723 92 0.200 002 3 �0:265 13
1040 �2:883 724 14 0.200 001 2 �0:265 09
1240 �2:883 724 22 0.200 000 8 �0:265 07

KV [10] 0.20 �0:2655ð6Þ
MCHF [11] 0.20 �0:2630
RM [12] 0.20 �0:265ð1Þ

-0.267

-0.266

-0.265
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FIG. 1. The s-wave phase shifts for e�-He scattering at k �
0:2a�1

0 plotted as function of �E for different-sized basis sets.
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to better than 10�4 rad, and a conservative estimate of the
�E! 0 limit would be �0:265 03ð5Þ rad. This assumes
no great deviation from the apparently linear behavior of
�CVM and �0

CVM with �E.
The variability in the energy at which the phase shifts are

determined has only a small impact on the derived values
of the phase shifts. The effective range expression
tanð�Þ ¼ �Ak suggests that the change in phase shift due
to a momentum offset is �� � �A�k. The scattering
length for e�-He scattering is about �1:184ð6Þa0 [10]. A
momentum offset of 10�5a�1

0 leads to a change in phase

shift of only 1:2� 10�5 rad.
The present phase shift at k ¼ 0:2a�1

0 , namely,

�0:265 03 rad, is the best estimate of the He phase shift
yet determined. The long-range polarization potential that
is based on second-order perturbation theory is a source of
uncertainty. The usage of the polarization potential for r >
R0 increases the phase shift by about 0.000 19 rad. This
correction should be reliable to better than 0.000 01 rad
since the r�6 term in the polarization expansion involving
the quadrupole (2.445 a.u.) and nonadiabatic dipole
(0.7076 a.u.) polarizabilities is less than 0.5% of the mag-
nitude of the r�4 dipole term at r ¼ 18a0.

There have been three large scale calculations aimed at
giving definitive values for the low energy helium cross
section. The Kohn variational (KV) calculations of Nesbet
[10] used a basis of single particle orbitals centered on the
nucleus to represent the target and scattering electrons.
This is also true of the multiconfiguration Hartree-Fock
(MCHF) calculation [11]. Another notable calculation was
the R-matrix calculation (RM) by O’Malley, Burke, and
Berrington [12]. The KV helium elastic cross section of
Nesbet is often adopted as the theoretical benchmark cross
section [22,23]. There is a 1% scatter among these three
calculations with the KV phase shifts being the most
negative. The present phase shift is 0.2% more positive
than the KV phase shift. This is within the uncertainty of
0.24% estimated by Nesbet [10]. It is probably not coinci-
dental that the KV elastic cross section is about 1% larger
than experiment at k ¼ 0:2a�1

0 [23].

One source of uncertainty with our strategy is the value
of the confining potential inner radius, namely, R0. The
present approach treats polarization effects for r > R0

using second-order perturbation theory. The e�-H phase
shift in the 3Se channel at k ¼ 0:20a�1

0 has been computed

with two different confining potentials: one with R0 ¼
18a0 (using the second lowest energy) and the other with
R0 ¼ 22a0 (using the third lowest energy). The phase
shifts were �0:424 09ð1Þ and �0:424 10ð4Þ rad, respec-
tively. Although convergence in the wider confining poten-
tial was inhibited by linear dependency effects, the phase
shifts are stable to better than 0.000 05 rad against a varia-

tion in R0. The best previous determination of this phase
shift was �0:4242ð2Þ rad [24].
In summary, a strategy for extracting phase shifts from

bound state calculations is presented. The phase shift for
the e�-He system is an order of magnitude more precise
than those reported previously [10–12]. The strategy can be
adapted to almost any method that diagonalizes the
Schrödinger equation in a square integrable basis, and it
can be applied to target systems which are themselves
many-body systems.
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