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A general new technique to solve the two-center problem with arbitrarily oriented deformed realistic

potentials is demonstrated, which is based on the powerful potential separable expansion method. As an

example, molecular single-particle spectra for 12Cþ 12C ! 24Mg are calculated using deformed Woods-

Saxon potentials. These clearly show that nonaxial symmetric configurations play a crucial role in

molecular resonances observed in reaction processes for this system at low energy.
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The description of a particle moving in the field of two
fixed potential centers separated by a distance R (the two-
center problem) is fundamental in classical [1] and quan-
tum mechanics [2,3], and finds a myriad of applications in
celestial mechanics, quantum chemistry, atomic and mo-
lecular physics, and nuclear physics. This appears (i) in the
study of the scattering of radiation by two black holes [4],
(ii) in the quantum mechanical theory of chemical binding
[5], (iii) in the description of electron-positron pair pro-
duction in heavy ion and ion-atom collisions [6], (iv) in the
study of the properties of baryons containing two heavy
quarks (QQq) [7], and (v) in phenomena related to nuclear
molecules [8].

The applications to phenomena in low energy nuclear
physics [8] were first introduced (in practice) by the
Frankfurt school using the two-center shell model
(TCSM) based on a double oscillator potential [9].
Improved versions of this approach have been suggested
for dealing with superasymmetric fission [10] and asym-
metric fission with deformed fragments [11]. In all these
models, the two-center potentials are rotationally symmet-
ric about the internuclear axis. These potentials are appro-
priate, e.g., for the description of binary fission where the
fragments are spherical or deformed with their intrinsic
symmetry axis aligned with the internuclear axis.

All alignments are possible in collisions of deformed
nuclei. The major role of orientation of the deformed target
in the onset of quasifission, whose understanding is very
important to unpuzzle the formation mechanism of super-
heavy elements [12], has been demonstrated [13] by fission
measurements in reactions forming heavy elements. A
more general TCSM is required for a proper description
of these reactions within the molecular picture [8]. It is
justified at low incident energies near the Coulomb barrier,
as the radial motion of the nuclei is expected to be adiabati-
cally slow compared to the rearrangement of the two-
center mean field of nucleons. To my knowledge, only
one attempt has been made to account for arbitrarily ori-
ented deformed nuclei, in which the wave-function expan-
sion method (usual diagonalization procedure) and specific

potentials (two ellipsoidally deformed Gausssian poten-
tials) were applied to describe the reaction 13Cþ 16O [14].
I present a general new technique to solve the two-center

problem with arbitrarily oriented deformed fragments. The
procedure is based on the powerful potential separable
expansion method [15] that has been successfully used to
solve the two-center problem with spherical Woods-Saxon
(WS) potentials [16,17]. The technique is shown using
deformed WS potentials, but it can also be employed
with other types of deformed potential, provided a suitable
set of basis functions is selected. Hence, the method has
applications in many areas of science. The formalism is
described first, and illustrated afterwards with calculations
of molecular single-particle (SP) spectra for the reaction
12Cþ 12C, which is of great astrophysical interest [18].
These calculations show the major role of nonaxial sym-
metric configurations in forming a nuclear molecule, as the
overlapping nuclei keep their identity and can ‘‘dance’’ for
quite some time at contact.
The finite depth nuclear potential Vsðr; ��0Þ of each

spheroidal nucleus (s ¼ 1, 2) is chosen to be a deformed
WS [19] with a spin-orbit term and deformation parame-
ters ��0. For protons, the Coulomb potential Vs

Coulðr; ��0Þ
[20] of a uniformly charged spheroid with charge Zse (Zs

being the total charge of each fragment) should be added to
the nuclear potential. This treatment of the Coulomb inter-
action is suitable for separated fragments, but may not be
the most appropriate prescription for overlapping nuclei.
Its validity could be assessed by comparing this two-center
Coulomb field to the field generated by a uniformly dis-
tributed charge within a dinuclear shape. The Coulomb
interaction shifts up the proton levels with respect to the
neutron levels, and increases the SP potential barrier be-
tween the fragments [17].
The origin of the total deformed potential Vsðr; ��0Þ is

placed at the position Rs in the overall center-of-mass
(c.m.) system, where its intrinsic symmetry axis is orien-
tated by Eulerian angles �s ¼ ð�s; �s; 0Þ (0 � �s � 2�
and 0 � �s � �) with respect to the initial internuclear
axis (see Fig. 1). Thus, the two-center potential is
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V ¼ X2

s¼1

e�iRsk̂Ûð�sÞVsÛ
�1ð�sÞeiRsk̂; (1)

where k̂ ¼ @
�1p̂ is the SP wave-number operator and Û is

the operator of finite rotations [21], whose inclusion is the
key new aspect of this work. Of course, the rotation opera-
tor is not required for spherical nuclei [17]. Each potential
Vs in (1) is expressed as

Vs �
XN

��

js�iVs
��hs�j; (2)

within a truncated spherical SP harmonic oscillator basis,
fj�i; � ¼ 1; . . .Ng, with the spin-angular part having the
total angular momentum j with projection m, e.g., in the
momentum representation (see [17] for further details)

j�i ¼ jnljmi ¼ gnlðkÞ � ½i�lYlðk̂Þ � �1=2ðsÞ�jm: (3)

The number N of basis states is defined by lmax (number
of partial waves in which the potential acts) and nmax (the
number of separable terms in each partial wave). The
values of lmax and nmax are determined by the convergence
of the SP energies, which is accelerated using the tech-

nique of the Lanczos 	 factors [22]. These are nmax ¼ 3
and lmax ¼ 4 for the studied reaction 12Cþ 12C.
For bound (or quasistationary) states, the formal solution

of the Schrödinger equation is

j’i ¼ G0ðEÞVj’i; G0ðEÞ ¼
�
E� @

2k̂2

2m0

��1
; (4)

where G0 is the Green operator of the free SP motion.
Inserting (1) with (2) into (4), and multiplying from the left

by hs�jÛ�1ð�sÞeiRsk̂, the following set of linear equations

for the amplitudes As� ¼ hs�jÛ�1ð�sÞeiRsk̂j’i is ob-

tained:

XN

�0¼1

X2

s0¼1

�

ss0
��0 �XN

�¼1

hs�jÛ�1ð�sÞG0ðEÞeiRss0 k̂Ûð�s0 Þjs0�iVs0
��0

�
As0�0 ¼0; (5)

where Rss0 ¼ Rs �Rs0 . Here there is no direct overlap between the two (nonorthogonal) set of basis functions, unlike in
the secular matrix equation that results from the wave-function expansion method [14]. Only the off-diagonal block (s �
s0) of the matrix for the linear system (5) contains the dependence on the nuclei orientation �s, as Û

�1ð�sÞÛð�sÞ is the
unitary operator. The matrix elements in (5) involving the Green operator G0 are expressed in terms of the Wigner
D functions as follows:

X

m1m2

Dj�
m1mð�sÞhsnljm1jG0ðEÞeiRss0 k̂js0n0l0j0m2iDj0

m2m
0 ð�s0 Þ; (6)

where the newmatrix elements in (6) are explicitly given in
Ref. [17] [see expressions (12)–(16)]. The off-diagonal
term (s � s0) of these new matrix elements vanishes for
large separations [16], turning the two-center problem into
two independent one-center problems associated with the
individual deformed nuclei.

The system of algebraic equations (5) is equivalent to
the Lippmann-Schwinger equation (4) with separable po-
tentials (2), whose solution is exact. The solvability con-
dition is that its determinant vanishes, leading to the
adiabatic energies E that are a parameter in the Green
operator G0. With the eigenvalues E, the eigenstates j’i
are obtained solving the system (5) for the amplitudes As�

and requiring the normalization of the state vectors j’i. For
well-separated nuclei, the eigenstates are those of the
individual nuclei, being the projection of the SP total
angular momentum along their intrinsic symmetry axis a
good quantum number. Molecular orbitals develop at small
separations, which may not have good quantum numbers
(there are no symmetries) as the two set of basis states are

completely mixed by the potential and the operator of finite
rotations. For identical potentials (mutually aligned iden-
tical nuclei), a symmetry of the two-center potential (1)
arises, namely, its invariance under the permutation of the
individual orientated potentials with respect to the CM
point in Fig. 1. In this case, the parity of the molecular
SP states is also a good quantum number. Symmetric and
antisymmetric linear combinations of those (asymptoti-
cally degenerated) states, with opposite parity, result in
(atomic) states localized around one of the potentials
[16]. Where this is not the case, the solution of the two-
center problem at large separations directly yields states of
the individual nuclei.
The formalism is now illustrated with calculations of

molecular SP levels diagram (i.e., energy levels as a func-
tion of the internuclear distance R) for 12Cþ 12C ! 24Mg,
where 12C is an oblately deformed nucleus with quadru-
pole deformation�2 ¼ �0:5 [23]. Calculations are carried
out for the collisions shown in Fig. 2. The parameters of the
asymptotic WS potentials (R ¼ 0 and R ! 1) including

z’ z’

z

12

Ω2
Ω1

CM
12R R

FIG. 1. Schematic picture of the coordinates used to define the
two-center potential (1) in the collision between two deformed
nuclei. See text for further details.
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the spin-orbit term are the global parameters by Soloviev
[24], where the depth of the potentials has been adjusted to
reproduce the experimental SP separation energies [25]. To
describe fusion, all the potential parameters (including
those of the Coulomb potential for protons) have to be
interpolated between their values for the separated nuclei
and the spherical compound nucleus [17]. The parameters
can be correlated by conserving the volume enclosed by a
certain equipotential surface (the Fermi level of the spheri-
cal fused system) of the two-center potential (1), for all
separations R between the nuclei with orientations �s

[14,17]. The nuclear shape is considered to be the same
for neutrons and protons, with the neck size naturally
determined by the superposition of the smooth tail of the
two WS potentials. However, a variable neck size could be
included in the method through an additional intermediate
potential, resulting in a three-center problem. This may be
very useful in fission studies and cluster physics.

Figures 3 and 4 show the molecular SP levels diagram
for neutrons and protons, respectively, for different orien-
tations of the two oblately deformed 12C, as presented in
Fig. 2. Only for the aligned orientation of the deformation
axis with the internuclear axis [axial symmetric configu-
ration in panel (a)], the projection of the nucleon total
angular momentum along the internuclear axis is a good
quantum number at all separations, whose values are rep-
resented by different curves. Here as in panel (b), the parity
of the molecular orbitals (not indicated) is also a good
quantum number, whose values are easily deduced from
the orbital angular momentum l of the SP levels of the
spherical compound nucleus (R ¼ 0), i.e., ð�1Þl. The full
circles denote the Fermi level of the 12C nuclei and the
spherical compound nucleus. As expected, the asymptotic
shell structure does not depend on the mutual alignment of
the 12C nuclei.

These molecular spectra show significant features:
(i) The asymptotic shell structure of 12C is much less

distorted for nonaxial symmetric configurations [panels
(b)–(d)] than for the axial symmetric one [panel (a)], the
former showing more preservation of the indentity of the
overlapping nuclei.

(ii) For nonaxial symmetric configurations, the neutron
levels show a minimum at separations between 4–6 fm,
which may result in a ‘‘molecular pocket’’ in the collective
potential energy surface [8]. This depends weakly on the
mutual alignment.
(iii) Many avoided crossings appear between 2–6 fm, in

which the SP wave function abruptly changes its nodal
structure. It may lead to strong peaks in the radial collec-

(a)
(b)

(c)
(d)

FIG. 2 (color online). Different configurations for the reaction
12Cþ 12C: axial symmetric (a), and nonaxial symmetric (b)–(d).
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FIG. 3 (color online). Neutron molecular SP levels as a func-
tion of the internuclear distance R, corresponding to the con-
figurations shown in Fig. 2. Different curves in panel (a) are
associated with different magnetic quantum numbers. The points
denote the Fermi level of the spherical compound nucleus and
the 12C nuclei.
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FIG. 4 (color online). The same as Fig. 3, but for protons.
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tive mass parameter [26], which can hinder the fusion of
the nuclei. The critical radius for fusion [27] (where the
shell structure of 24Mg starts to build up) is quite small for
nonaxial symmetric configurations (&2 fm), which also
favors the formation of a nuclear molecule (the weakly
overlapping nuclei remain longer around 4–6 fm).

The preservation of the identity of the nuclei along with
their being trapped around the contact distance are crucial
aspects for the formation of a nuclear molecule [8]. These
favorable features are shown by nonaxial symmetric con-
figurations of 12Cþ 12C. Since their shell structures are
quite similar, the 12C orientation is clearly an essential
variable in the reaction processes. This degree of freedom
activates [28,29] dynamical modes (butterfly, antibutterfly,
belly dancer, etc.) at contact, making the nuclei ‘‘dance’’
there for quite some time. It should result in narrow reso-
nances in the reaction cross sections, as shown by mea-
surements [30]. The molecular SP spectra are useful to
microscopically obtain collective potentials and mass sur-
faces for a molecular reaction dynamical calculation [29].
It is worth mentioning that other studies [31–34] have also
argued the importance of the nonaxial symmetric configu-
rations for effects of molecular resonances on reaction
processes for 12Cþ 12C.

In summary, a general new technique to solve the two-
center problem with arbitrarily oriented deformed realistic
potentials has been demonstrated. Among other applica-
tions such as in cluster physics [35], this should be very
useful for describing, within the molecular picture, low
energy nuclear reaction processes involving deformed nu-
clei, such as (i) formation of heavy and superheavy ele-
ments [36], (ii) effects of breakup of weakly bound nuclei
on fusion [37], and fusion reactions of great astrophysical
interest [26]. Molecular SP spectra clearly show that non-
axial symmetric configurations are crucial for the forma-
tion of a nuclear molecule in the reaction 12Cþ 12C.
Reaction dynamical calculations for a quantitative under-
standing of molecular resonance structures in its astrophys-
ical S factor [30] are in progress.

The author thanks Professor W. Scheid for discussions.
Support from an ARC Discovery grant is acknowledged.

[1] J. E. Howard et al., Phys. Rev. A 52, 4471 (1995).
[2] J. S. Slater, Electronic Structure of Molecules (McGraw-

Hill, New York, 1963).
[3] B. Müller, J. Rafelski, and W. Greiner, Phys. Lett. B 47, 5

(1973).

[4] S. Chandrasekbar, Proc. R. Soc. A 421, 227 (1989).
[5] E. Teller, Z. Phys. 61, 458 (1930).
[6] J. Eichler, Phys. Rev. Lett. 75, 3653 (1995).
[7] Da-Heng He et al., Phys. Rev. D 70, 094004 (2004).
[8] W. Greiner, J. Y. Park, and W. Scheid, Nuclear Molecules

(World Scientific, Singapore, 1994).
[9] J. A. Maruhn and W. Greiner, Z. Phys. 251, 431 (1972).
[10] M. Mirea, Nucl. Phys. A780, 13 (2006).
[11] R. A. Gherghescu, Phys. Rev. C 67, 014309 (2003).
[12] Yu. Ts. Oganessian, Nature (London) 413, 122 (2001).
[13] D. J. Hinde et al., Phys. Rev. Lett. 100, 202701 (2008).
[14] G. Nuhn, W. Scheid, and J. Y. Park, Phys. Rev. C 35, 2146

(1987).
[15] J. Revai, JINR Report No. E4-9429, Dubna, 1975; B.

Gyarmati, A. T. Kruppa, and J. Revai, Nucl. Phys. A326,
119 (1979).

[16] F. A. Gareev et al., Nucl. Phys. A286, 512 (1977).
[17] A. Diaz-Torres and W. Scheid, Nucl. Phys. A757, 373

(2005).
[18] C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos

(The University of Chicago Press, Chicago, 1988).
[19] A. Faessler and R.K. Sheline, Phys. Rev. 148, 1003

(1966).
[20] T. Tamura, Rev. Mod. Phys. 37, 679 (1965).
[21] E. Merzbacher, Quantum Mechanics (John Wiley and

Sons, Inc., New York, 1970), 2nd ed., p. 371.
[22] A. Diaz-Torres, Phys. Lett. B 594, 69 (2004).
[23] V.M. Lebedev, N. V. Orlova, and A.V. Spassky, Yad. Fiz.

62, 1546 (1999) [Phys. At. Nucl. 62, 1455 (1999)].
[24] V. G. Soloviev, Theory of Complex Nuclei (Pergamon

Press, Oxford, 1976), p. 21.
[25] G. Audi and A.H. Wapstra, Nucl. Phys. A565, 1 (1993).
[26] A. Diaz-Torres, L. R. Gasques, and M. Wiescher, Phys.

Lett. B 652, 255 (2007).
[27] D. Glas and U. Mosel, Phys. Lett. B 49, 301 (1974).
[28] P. O. Hess, W. Greiner, and W. T. Pinkston, Phys. Rev.

Lett. 53, 1535 (1984).
[29] E. Uegaki and Y. Abe, Phys. Lett. B 231, 28 (1989); 340,

143 (1994).
[30] E. F. Aguilera et al., Phys. Rev. C 73, 064601 (2006).
[31] H. Chandra and U. Mosel, Nucl. Phys. A298, 151

(1978).
[32] O. Tanimura and T. Tazawa, Phys. Lett. B 78, 1 (1978).
[33] M. Niklas et al., Z. Phys. A 323, 27 (1986).
[34] P. O. Hess, J. Schmidt, and W. Scheid, Ann. Phys. (N.Y.)

240, 22 (1995).
[35] W. von Oertzen, M. Freer, and Y. Kanada-En’yo, Phys.

Rep. 432, 43 (2006).
[36] A. Diaz-Torres, Phys. Rev. C 69, 021603(R) (2004); Phys.

Rev. C 74, 064601 (2006).
[37] A. Diaz-Torres et al., Phys. Lett. B 533, 265 (2002); Nucl.

Phys. A703, 83 (2002).

PRL 101, 122501 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

19 SEPTEMBER 2008

122501-4


