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We argue that the best way to determine horizontal symmetry is from neutrino mixing and proceed to

show that the only finite group capable of yielding the tribimaximal mixing for all Yukawa couplings is S4,

or any group containing it. The method used is largely group theoretical, but it can be implemented by

dynamical schemes in which the Higgs expectation values introduced to break S4 spontaneously are

uniquely determined up to an unknown scale for each.
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Introduction.—Progress in particle physics is often
guided by symmetry. From isospin to the eightfold way,
from the standard model (SM) to grand unified theory,
supersymmetry and superstrings, symmetry always plays
a central role. It is therefore natural to expect that symme-
try may open the door to the generation problem as well.
For that reason, a plethora of horizontal symmetry groups
have been proposed, including Zm, Zm � Zn, Dn, S3, S4,
A4, A5, T

0, �ð27Þ, SOð3Þ, SUð3Þ, and others. The reason
why so many diverse groups can all claim to be reasonable
candidates is the presence of many adjustable Yukawa
coupling constants and Higgs expectation values in these
models. By suitably tuning these parameters one can arrive
at many attractive results.

If there is indeed a horizontal symmetry in nature, it
must be unique, and we need a criterion to determine what
it is. I subscribe to the view that a true symmetry would
reveal itself without any tuning of the dynamical parame-
ters, and I shall use that as the criterion to determine the
horizontal symmetry. I argue that neutrino mixing, rather
than quark mixing or the fermion masses, is the proper
vehicle to fix such a symmetry. This latter assertion may be
contrary to the instinct built up from atomic physics, where
approximate symmetry is reflected by proximity of energy
levels. In particle physics, symmetries are often broken
spontaneously by a large extent, rendering mass spectra
useless for recovering the unbroken symmetry. For ex-
ample, in SM, the bottom and the top quarks belong to
the same isodoublet, but their masses are so vastly different
that no trace is left of the isospin symmetry. Similarly, the
masses of the quarks and charged leptons in different
generations are also very different, suggesting that hori-
zontal symmetry is also broken spontaneously and fermion
masses are useless in its recovery. I also think that quark
mixing, being small, may result from a complicated dy-
namical perturbation of the unmixed state, whereas neu-
trino mixing, being large and regular, can best be used to
find out the unperturbed and the unbroken horizontal sym-
metry. The regularity of tribimaximal mixing [1] of neu-
trinos is analogous to the regularity of the Balmer series for
hydrogen atom. The latter led to the discovery of the Bohr

atom, with its rotational and dynamical symmetry of a
Coulomb potential, but it cannot predict fine structures
and hyperfine structures of the spectra brought on by addi-
tional dynamical perturbations. Similarly, the tribimaximal
mixing may also be subject to a small perturbation which
future experiments will reveal, but that does not invalidate
the horizontal symmetry established by its use.
I shall show in this Letter and a subsequent detailed

paper [2] that S4, the permutation group of four objects and
the symmetry group of the octahedron and the cube, is the
only finite group capable of giving rise to tribimaximal
mixing without tuning parameters. This symmetry is
unique up to the obvious generalization, that any group
containing S4 is a possible horizontal group as well. To
avoid repetition, when we say S4 is unique from now on,
we always mean to include this possible extension.
Since we like to uncover the symmetry without resorting

to specific dynamics, the method employed is largely
group theoretical, but we will discuss the implementation
of some dynamical schemes at the end. In that case, S4 is
broken by the introduction of Yukawa couplings and non-
SM Higgs bosons. The Higgs expectation values are
uniquely determined by the group structure, up to unknown
scales that will be absorbed into the Yukawa coupling
constants to form ‘‘effective coupling constants,’’ to be
used to fit the leptonic masses. Since there are now addi-
tional Higgs bosons present to share the burden of fermion
masses, the coupling of the SM Higgs boson to leptons are
no longer proportional to their masses.
Much has been written about the S4 subgroup A4 as a

horizontal group [3]. However, A4 gives rise naturally only
to trimaximal mixing but not bimaximal mixing [4]. It
requires either a tuning of the Yukawa couplings [5] or
the additional symmetries contained in S4 to get the bimax-
imal mixing. The group S4 had been previously studied [6],
but with a different motivation and a different conclusion.
From tribimaximal mixing to S4.—After reviewing [4]

how S4 comes about, the argument for its uniqueness will
be outlined.
Let c ¼ ðeL;�L; �LÞT be the left-handed charged lep-

tons and � ¼ ð�e; ��; ��ÞT the left-handed Majorana neu-
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trinos. Instead of their mass matricesMc andM�, we study

the combination �Mc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
McM

y
c

q
and M�, because they

connect left-handed to left-handed fermions, thereby
avoiding the involvement of the right-handed fermions in
this symmetry analysis. �Mc is Hermitian and M� symmet-
ric; they can be diagonalized by unitary matrices Uc and

U�, so that Uy
c �McUc is the diagonal matrix of charge-

lepton masses, and UT
�M�U� is the diagonal matrix of

neutrino masses. The Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) mixing matrix is given by U ¼ Uy
c U�. If F is a

symmetry operation of c andG a symmetry operation of �,
both unitary, then under the transformations c! Fc and
�! G�, symmetry demands Fy �McF ¼ �Mc and
GTM�G ¼ M�. As shown in [4], this means that the ei-
genvectors of F are the columns ofUc, with eigenvalues of
unit modulus, and the eigenvectors ofG are the columns of
U�, with eigenvalues�1. We shall choose the sign of G so
that it has one þ1 eigenvalue and two �1 eigenvalues.

It follows [4] that if F ¼ G, then Uc ¼ U� and U ¼ 1.
This is false, hence the horizontal symmetry must be
broken to enable F � G, and we assume the breaking to
be spontaneous. In the basis where Mc is diagonal, which
we adopt from now on, F is diagonal and U ¼ U�. Hence
the neutrino symmetry operator G can be read off from the
tribimaximal mixing matrix U. There are three of them,
with the eigenvector of Gi (i ¼ 1; 2; 3) of eigenvalue þ1
taken from the ith column of U, and the other two eigen-
vectors of eigenvalues �1 taken from the other two col-
umns. See [4] for details and formulas. These three
matrices commute, with G1 ¼ G2G3, so the group con-
tainingG2 andG3 must also automatically containG1. The
minimal horizontal group appropriate to tribimaximal mix-
ing is therefore the finite group G ¼ fF;G2; G3g generated
by F,G2, andG3. This group is not a priori unique because
F is not. However, since G is assumed to be finite, there
must be an integer n such that Fn ¼ 1. Conversely, given a
finite group G, it can be spontaneously broken to reveal the
tribimaximal mixing without tuning only when three of its
members, F, G2, G3, can be found to have these properties
when �Mc is diagonal. Since �Mc is not known from G, the
only way to guarantee its diagonality is to go to the basis
where F is diagonal. Since F commutes with �Mc, the
diagonality of �Mc is guaranteed if the three eigenvalues
of F are different, so we shall demand that of F from now
on. In particular, this requires n � 3. For n ¼ 3, the three
entries of F must be 1, ! ¼ expð2�i=3Þ, and !2. There
are 3! ¼ 6 possible F’s obtained from different positioning
of these three eigenvalues, but they only generate two
different groups, G ¼ S4 and 3:S4 [7]. The latter is ob-
tained by adjoining S4 with !S4 and !

2S4, and it contains
S4 as a subgroup. So for n ¼ 3, the minimum horizontal
group is S4.

To prove the uniqueness of S4, we must show that no
other finite group (except those containing S4) can be so
generated for n > 3. A direct proof is difficult because

there are an infinite number of cases to consider, so we
shall resort to a different strategy. Since an overall scalar
factor multiplying a matrix does not alter its eigenvectors,
we may confine ourselves to finite subgroups of SUð3Þ and
SOð3Þ, or their central extensions. We must show that
unless the finite group contains S4 it is impossible to find
three members F, G2, G3 in it so that, in the basis where F
is diagonal, the invariant eigenvectors of G2 and G3 are
given by the second and third columns of the tribimaximal
matrix U. This strategy is more viable than a direct ap-
proach because all the finite subgroups of SOð3Þ [or SUð2Þ]
and SUð3Þ are known.
For SOð3Þ [or SUð2Þ] [8], they are given by the two

infinite series, Zn (cyclic groups) andDn (dihedral groups),
and three isolated ones: A4, the alternating group of 4
objects, which is also the symmetry group of the tetrahe-
dron; S4, the symmetric group of four objects, which is also
the symmetry group of the octahedron and the cube; and
A5, the symmetry group of the icosahedron and the do-
decahedron. For SUð3Þ [8,9], there are in addition two
infinite series, �ð3n2Þ and �ð6n2Þ, and six isolated ones,
�ð36Þ, �ð60Þ, �ð72Þ, �ð168Þ, �ð216Þ, and �ð360Þ; the
number in each case indicates the order of the group. The
detailed argument to reject all of them except S4 is some-
what lengthy, and will be postponed to another publication
[2]. However, it is easy to state on what basis each of them
is rejected. First of all, it has been shown in [4] that the
group must possess a three-dimensional irreducible repre-
sentation, or else we cannot get the tribimaximal mixing
pattern without tuning parameters. On that basis the groups
Zn,Dn, �ð36Þ, �ð72Þ, �ð360Þ can be rejected because they
do not possess three-dimensional irreducible representa-
tions. As mentioned before, the group A4 is rejected be-
cause it leads to trimaximal but not bimaximal mixing [4].
The groups �ð3n2Þ and �ð6n2Þ are rejected because their
explicitly known three-dimensional irreducible representa-
tions all have a special form, so special that tribimaximal
mixing cannot occur unless they contain S4 as a subgroup.
The rest of the groups are rejected by using their character
tables to pick out the order n of F and its eigenvalues. If
n ¼ 3, then either the group contains S4 or else it cannot
accommodate the tribimaximal mixing. For n > 3, we can
use its eigenvalues to construct all possible F. With G2, G3

determined from the columns of the tribimaximal matrix,
we can compute the orders of FG2 and FG3, and in each
case one or the other would have an order larger than the
order of the whole finite group. Hence at least one of these
G2 andG3 cannot be in the group and tribimaximal mixing
cannot occur.
Spontaneous breaking.—The discussion so far is purely

group theoretical. To implement a dynamical scheme com-
plementary to the discussion we have to write down the
mass term of an effective Hamiltonian. After integrating
over the right-handed fermions, it can be symbolically
written as
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H ¼ X
A

ð�Acyc�A þ�A�
T� AÞ þ H:c:; (1)

where �A and�A are the Yukawa coupling constants to the
Higgs fields �A and  A. For later convenience, an energy
scale is incorporated into the couplings so that the Higgs
fields become dimensionless, with vacuum expectation
values given later. The Higgs fields in (1) may be compos-
ite, and the spacetime structure is implicit, may even be
nonlocal, but all that we care about is the S4 behavior.
Before the Higgs bosons develop an expectation value, H
must be invariant under every S4 transformation.
Afterwards, the horizontal symmetry is broken, hHi is no
longer invariant under every S4, but it must still be invari-
ant under the residual symmetries of F on c, andG2, G3 on
�, in order to recover the tribimaximal mixing. To achieve
that, we must have

Fh�Ai ¼ h�Ai; G2;3h Ai ¼ h Ai: (2)

These equations determine the structure of the vacuum
expectation value for every Higgs boson up to an unknown
scale which has been incorporated into the Yukawa
couplings.
S4 has five irreducible representations, 1, 1

0, 2, 3, 30, and
by definition the left-handed fermions belong to 3. If we
use a boldface superscript to denote an irreducible repre-
sentation, then the representations of F and Gi (i ¼ 2; 3)

are F1¼F10 ¼G1
i ¼G10

2 ¼�G10
3 ¼1, F2 ¼ diagð!;!2Þ,

F3 ¼ F30 ¼ diagð1; !;!2Þ, G2
2 ¼ diagð1; 1Þ, and

G2
3 ¼

0 1

1 0

 !
; G3

2 ¼ G30
2 ¼ 1

3

�1 2 2

2 �1 2

2 2 �1

0
BB@

1
CCA;

G3
3 ¼ �G30

3 ¼ �
1 0 0

0 0 1

0 1 0

0
BB@

1
CCA: (3)

Applying this to (2), we deduce that h�1i ¼ h�10 i ¼
h 1i ¼ 1, h 10 i ¼ h 3i ¼ h�2i ¼ 0, h�3i ¼ h�30 i ¼
ð1; 0; 0ÞT , h 2i ¼ ð1; 1ÞT , and h 30 i ¼ ð1; 1; 1ÞT . Since

3� 3 produces 1þ 2þ 3þ 30, neither �10 nor  10 is
present in (1). With h�2i ¼ h 3i ¼ 0, there remain exactly
three Yukawa coupling constants each for the charged
leptons and neutrinos in hHi, just enough to fit the three
charged lepton masses and the three neutrino masses. With
appropriate Clebsch-Gordan coefficients inserted, the mass
matrices can be read off from (1) to be �Mc ¼ diagða�
2b; aþ b� c; aþ bþ cÞ, where a ¼ �1=

ffiffiffi
3

p
, b ¼

�30=
ffiffiffi
6

p
, c ¼ �3=

ffiffiffi
2

p
, and

M� ¼
c� 2e dþ e dþ e
dþ e d� 2e cþ e
dþ e cþ e d� 2e

0
@

1
A; (4)

where d ¼ �1=
ffiffiffi
3

p
, d ¼ �2=

ffiffiffi
3

p
, e ¼ �30=

ffiffiffi
6

p
. SinceM� is

2–3 symmetric and magic, the tribimaximal mixing pattern
is guaranteed [10].
So far we have ignored the right-handed leptons. They

must be introduced to implement a local dynamics, but
there is more than one way to do so. For example, if the
right-handed charged leptons, denoted by cR, belong to 3,
then the Hamiltonian is once again given by (1), with cy

replaced by cyR. The subsequent S4 analyses are identical,
so we have three isodoublet Higgs bosons coupled to the
charged leptons, in representations 1, 3, 30, and, in addition,
three isotriplet Higgs bosons in 1, 2, 30 coupled to the
Majorana neutrinos. Other dynamical schemes and the
allowed Yukawa potentials will be discussed later in a
separate publication.
In conclusion, we have shown that S4, and groups con-

taining it, are the only finite horizontal symmetries capable
of reproducing tribimaximal mixing of neutrinos without
tuning the Yukawa coupling constants. These constants are
used exclusively to fit the fermionic masses.
I am grateful to James Bjorken, Ernest Ma, JohnMcKay,

and Maxim Pospelov for helpful discussions.
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