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We study the creation of solitons from particles, using the ��4 model as a prototype. We consider the

scattering of small, identical, wave pulses, which are equivalent to a sequence of particles, and find that

kink-antikink pairs are created for a large region in parameter space. We also find that scattering at low

velocities is favorable for creating solitons that have large energy compared to the mass of a particle.
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A wide variety of systems, ranging from polyacetylene
and Josephson junctions to high energy particle physics
models, contain nonperturbative, ‘‘soliton’’ or ‘‘solitary
wave’’ excitations in addition to perturbative ‘‘particle’’
excitations [1]. An important unsolved problem is to find
ways to transition from the particle sector to the soliton
sector. At a pragmatic level, we would like to develop
implementable schemes that might enable solitons to be
built out of particles. A transition from two energetic
particles to solitons, however, is known to be exponentially
suppressed, e.g., [2] (for a review see [3]), though it may
occur more readily in certain situations, such as in the
background of a preexisting kink [4,5].

In this Letter, we will determine a class of initial con-
ditions that consist of small amplitude perturbations that
scatter and successfully lead to the production of a kink-
antikink (‘‘k �k’’) pair in 1þ 1 dimensions. A trivial scheme
to determine such a set of initial conditions is to time
reverse the annihilation of k �k. Then the time reversed
particles would assemble into an outgoing k �k. However,
in any practical setting, such initial conditions would be
very hard to arrange since the characteristics of the radia-
tion from k �k annihilation are highly nontrivial. Instead we
want to consider ‘‘clean’’ initial conditions in which we
scatter identical wave pulses, somewhat like 2 particle
scattering. The simplicity of the initial state comes with a
price in that the final state will now not only contain a k �k
but also some radiation. Our approach thus differs from
other studies which generally considered initial conditions
containing a single kink and hence had nonvanishing to-
pological charge, e.g., [5].

In order to determine clean initial conditions that give k �k
in the final state, we draw lessons from the sine-Gordon
model which contains both particle and soliton sectors and
has been studied extensively, both classically and in quan-
tum theory [1,6–8]. While the complete integrability of the

sine-Gordon model permits many exact solutions, it also
leads to a disappointing disconnection between the particle
and soliton sectors, not present in many other models
which admit solitons. For example, in the sine-Gordon
model, it is not possible to start with, say, a soliton and
an antisoliton and end up with particles. If a soliton and an
antisoliton are set up to collide and possibly annihilate,
they simply pass through each other. Thus soliton scatter-
ing states do not convert to particle states (even in quantum
theory).
What is important for us is that the sine-Gordon model

also contains ‘‘breather states.’’ If a breather state has large
amplitude, it can be interpreted as a bound state of a soliton
and an antisoliton, in which the two keep oscillating about
each other but never annihilate. On the other hand, small
quantized breathers have been interpreted as fundamental
particles in the theory. Then one might expect the breather
to be a bridge between the particle and soliton sectors. In
the sine-Gordon model, however, the breather is a stable
object in itself and fails to connect the particle and soliton
sectors.
To connect the particle and soliton sectors it is necessary

to depart from the sine-Gordon model. The smaller the
departure, the weaker will be the connection between the
particle and soliton sectors. Then, if we depart weakly from
the sine-Gordon model, we expect long-lived ‘‘breather-
like’’ states that can transition to both widely separated
kink-antikink pair and also to particles. Such long-lived
states have been discovered in various systems and have
been termed ‘‘bions’’ in certain contexts and ‘‘oscillons’’ in
others [9–21].
Motivated by these considerations, we study k �k produc-

tion in the ��4 model
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where we have rescaled fields and coordinates so that�0 is
the only parameter in the model. The equation of motion is

€� ¼ �00 � ð�2 � 1Þ�; (2)

where overdots denote time derivatives and primes denote
spatial derivatives. The mass of a fundamental excitation
can be found by considering small fluctuations around one

of the vacua (say � ¼ þ1) and is m ¼ ffiffiffi
2

p
. The kink

profile is

�k ¼ tanh
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p
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The energy of a kink is found from the energy expression
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and is
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Note that the kink energy may be made very large com-
pared to the particle mass by taking large values of �0.
However,�0 itself does not enter the classical dynamics of
the scalar field though it does play a role in the quantized
model.

We would like to use breatherlike solutions in the ��4

model in our initial condition. However, such solutions are
not known analytically. Hence we simply use the breather
solutions of the pure sine-Gordon model

LSG ¼ 1

2
@��@��� 1

�2
½1þ cosð��Þ�; (6)

which are given by
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where

T ¼ �½t� vðx� x0Þ�; X ¼ �½x� x0 � vt�
� ¼ ð1� v2Þ�1=2; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
=!:
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In Eq. (7), the tan�1ð�Þ function is taken to lie in the
interval ð��=2;þ�=2Þ. Apart from the boost � and shift
x0, a breather solution is labeled by the parameter ! 2
ð0; 1Þ. The solution for small ! can be viewed as a sine-
Gordon kink and an antikink that are oscillating back and
forth, merging and emerging forever. Note that the breather
is localized around one vacuum (at � ¼ �1), and probes
the second vacuum (at � ¼ þ1) for durations that vary
inversely with !. For ! � 1, the breather describes oscil-
lations in the vacuum around � ¼ �1. In the quantum
theory, these oscillations are quantized and the energy of
the lowest quantum state is equal to that of a particle,
leading to the identification of the lowest energy breather
with the particle excitation in the model.

Before proceeding consider an initial unboosted sine-
Gordon breather [Eq. (7) with v ¼ 0], in the ��4 model
with equation of motion given in Eq. (2). [That is, the

initial condition is�ð0; xÞ ¼ �SG
b ð0; x;!; 0Þ and _�ð0; xÞ ¼

_�SG
b ð0; x;!; 0Þ.] The energy of the solution can be obtained

by evaluating Eq. (4) at t ¼ 0 when �b ¼ �1 for all x.
Then the potential and gradient terms do not contribute,
and the kinetic contribution is easily evaluated. As in the
sine-Gordon model we find

Eb ¼ 16
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The ratio of kink to breather energy is
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where in the last expression we assume ! � 1. The field
profile itself, �ðt; xÞ, can be obtained numerically and we
have checked that it is oscillatory and long-lived. More
specifically, we have shown that half of the initial energy
Eb in the simulation box (itself much larger than the
breather size) is radiated in a time T1=2 ’ 5� 104��1:9,

independently of !.
We now turn to the problem at hand, namely the creation

of k �k from particles. Our initial conditions will consist of a
train of Nb little (i.e., ! � 1) breathers coming in from the
left and another identical train of Nb breathers coming in
from the right. We will study the collision of these breather
trains for a variety of parameters and look for the formation
of k �k. Hence our initial condition corresponds to an in-
coming state

fðt; xÞ ¼ �1þ XNb

n¼�Nb;�0

4

�
tan�1

�
� sinð!TnÞ
coshð�!XnÞ

�
; (11)

with

Tn ¼ �½t� vnðx� x0nÞ�; Xn ¼ �½ðx� x0nÞ � vnt�;
(12)

where x0n ¼ aþ nd, vn ¼ �v < 0 for n > 0, and x0n ¼
�aþ nd, vn ¼ þv > 0 for n < 0. The parameter a is half
the separation between the trains at t ¼ 0 and d is the
separation between different breathers in the same train.
The initial conditions (at t ¼ 0) are

�ð0; xÞ ¼ fð0; xÞ; _�ð0; xÞ ¼ _fð0; xÞ: (13)

To further motivate our choice of initial conditions, let
us consider what might be required to form a k �k. Initially,
the field is oscillating about the � ¼ �1 vacuum. To form
k �k, we need the oscillations to extend into the � ¼ þ1
vacuum. So we need to build up the field oscillations. As
the leading breathers in the trains collide, the field at x ¼ 0
starts oscillating. Subsequent breathers provide additional
kicks to the oscillations at x ¼ 0. Provided the subsequent
collisions are in phase, the amplitude of oscillations at
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x ¼ 0 will grow in resonance. The growth must compete
with the dissipation due to the emission of particle radia-
tion. If the growth wins, the oscillations will eventually
extend up to the � ¼ þ1 vacuum and then it will be
energetically favorable for �ðt; 0Þ to stay there. Then it
becomes likely that k �k will be created.

The same heuristic argument may be applied to the pure
sine-Gordon model and serves to show its limitations. We
know that k �k are not created in the sine-Gordon model, but
it is not because dissipation is stronger than resonant
growth. Instead the integrability ensures that the breather
trains pass unscathed through each other. So the heuristic
argument should be taken as motivation but cannot be
taken too literally; instead we must solve the equations
of motion and check for k �k production. However, what
seems clear is that k �k production may proceed via a
resonance and, just as a child can swing higher and higher
by timing her movement to within a factor of 2 per kick,
this level of tuning may be all that is needed to produce k �k.

The equation of motion for the scalar field, Eq. (2), is
solved numerically with the initial conditions in Eq. (11),
using the iterated Crank-Nicholson method with two iter-
ations [22], and absorbing boundary conditions [23] at the
ends of the lattice. The fields are evolved for one light
crossing time. As an additional check, we have also
evolved the initial conditions using MATHEMATICA, though
with fixed boundary conditions (see [24] for the notebook).
The MATHEMATICA results are generally consistent with the
Crank-Nicholson method, but there are a few discrepan-
cies. These may be due to the different integration routines
which also have different accuracies. The Crank-Nicholson
implementation is more transparent and we find it more
reliable, while the MATHEMATICA implementation is more
convenient to use.

The problem contains many parameters, all related to the
choice of initial condition: !, v, a, d, and Nb. For a given
value of !, Eq. (10) shows that, just on energetic grounds,

we need Nb > 0:6=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
. We have taken Nb ¼

int½2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
� þ 1 where int½x� denotes the largest inte-

ger less than or equal to x. Somewhat arbitrarily, we take

the initial half-separation of the trains to be a ¼ 10=�! ¼
10=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
, corresponding to 10 (at rest) breather widths.

The separation of the breathers in a train is taken to be d ¼
2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
. The only parameters left to specify are ! and

v. For a breather to have energy comparable to the particle
mass, and the kink to have energy much larger than the
particle, we require! to be very close to 1. With! ¼ 0:99,
the kink energy is about 4 times that of a breather. We shall
take ! 2 ð0:90; 0:99Þ. We then do runs for different values
of v and look for k �k formation.

An example of k �k production is shown in Fig. 1 where
we give two snapshots of the evolution. Animations of the
evolution may be found in Ref. [24]. Generally, by looking
at the field profile, it is quite clear when a k �k has been

created. However, there are some instances in which the
outcome is not so clear-cut. This includes the case when
the field profile shows k �k that are not separated by a large
distance or are almost at rest with respect to each other.
Then there is the possibility that the k �k will annihilate. In
such cases, we have chosen to call it a k �k creation event if
the kinks survived for at least the duration of the simula-
tion. Another novel outcome we have seen is that for some
parameters two or more pairs of k �k are produced.
In Fig. 2 we plot the region on the ð!;vÞ plane for our

choice of parameters that lead to the formation of a pair (or
more) of k �k. Note the trend—higher !, i.e., smaller
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FIG. 1 (color online). Two snapshots of the collision of
breather trains for ! ¼ 0:99, v ¼ 0:43 and other parameters as
described in the text. T denotes a light crossing time. The initial
state contains the train of breathers. Subsequently, kinks appear
and move apart.

FIG. 2. Results from our Crank-Nicholson code (square sym-
bols) mapping out k �k formation in the ð!; vÞ plane for the choice
of other parameters as described in the text. Note the occasional
gaps where k �k are not formed, and the downward trend with
larger ! (weaker incoming pulses).
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breather energy, requires lower incoming velocity. This
indicates that it is preferable to scatter many particles at
low energy to create solitons. If the incoming velocity is
too high, the breather trains simply pass through, as in the
sine-Gordon model. Also, note the occasional holes in the
plot (e.g., ! ¼ 0:91, v ¼ 0:82) where we did not observe
k �k formation. This substructure in the plot is reminiscent of
the bands observed in k �k scattering [25] and suggests that
k �k formation may be due to resonance.

The region leading to k �k formation is reasonably large
but does not extend to arbitrarily high !. For example, we
have not found initial conditions leading to k �k formation
for!> 0:99. The expanse of the ‘‘successful’’ region does
not concern us at the moment because our main objective
was to find a set of clean initial conditions that led to the
formation of k �k. We would be surprised if future inves-
tigations do not find a larger set of successful clean initial
conditions, even for very high values of !. Whether these
initial conditions are achievable in a practical setting is a
separate matter, and depends on the details of the
experiment.

There are several directions in which it would be useful
to extend our results. The first is to scan the space of initial
conditions more carefully, to gain further understanding of
what conditions enable k �k formation. Our space of initial
conditions could also be enlarged, if necessary. For ex-
ample, different breathers in a train could come in with
different velocities. We could also envision ‘‘building up’’
by starting with very large ! (small energy) breathers, and
building states corresponding to smaller ! (larger energy),
which can then collide to form k �k. Another direction is to
include quantum effects in the scattering. This would
require more precise understanding of the breather and
kink states in terms of particles. In the quantum sine-
Gordon model, soliton operators have been written down
in terms of an infinite number of particle operators [26].
We expect that the soliton operator in the ��4 model
should be expressible in terms of a finite number of particle
operators, otherwise it would seem impossible to build a k �k
starting with particles. Yet another direction to proceed
would be to consider solitons in higher dimensions. Then
we can study the creation of vortex-antivortex or
monopole-antimonopole pairs in suitable systems. We
would clearly need higher dimensional analogs of breath-
ers and we expect that oscillon states can play this role.
Finally, it would be useful to generalize our initial state to
real systems. After all, polyacetylene is described by the
��4 model, and we may expect to be able to create k �k
there. (Similar problems also arise in polymer physics in
the context of polymers that pass through a membrane
[27].) Our results do not directly apply to polyacetylene
because the dynamics there is nonrelativistic. However,

with suitable generalization, it may become possible to
test some of these ideas experimentally.
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