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We study the statistics of the work done on a quantum critical system by quenching a control parameter

in the Hamiltonian. We elucidate the relation between the probability distribution of the work and the

Loschmidt echo, a quantity emerging usually in the context of dephasing. Using this connection we

characterize the statistics of the work done on a quantum Ising chain by quenching locally or globally the

transverse field. We show that for local quenches starting at criticality the probability distribution of the

work displays an interesting edge singularity.
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A series of recent experiments with cold atomic gases
[1,2] spurred new interest on the dynamics of quantum
correlated systems. A number of fundamental issues on the
nonequilibrium physics of quantum systems are being
addressed, ranging from the relation between nonintegr-
ability and thermalization [3], to the universality of defect
production for adiabatic quenches across quantum critical
points [4]. In this broad context, a paradigmatic example of
experimental protocol is the instantaneous quench: an
abrupt change, either global or local, of a control parameter
g from some initial value g0 to a final one g1. Ex-
perimentally, it has been shown that the dynamics after
such quenches may show intriguing features, such as col-
lapse and revivals of the order parameter for quenches done
through a quantum critical point [1,5], as well as the
absence of thermalization in systems close to integrability
[2,3].

Theoretically, the study of quantum quenches received
considerable interest: after a series of classic works on the
nonequilibrium dynamics of the quantum Ising model [6],
recent investigations focused on characterizing the long
time asymptotics of correlation functions [7,8], their be-
havior as compared to their thermal counterparts [3], and
the universality emerging in the quench dynamics at a
quantum critical point [9]. Partial information on the in-
ternal dynamics of the system can be obtained in a variety
of ways. One may extract the way in which excitations
propagate by looking at the time dependence of correlators
after a quench [8,9]. More subtle information on the estab-
lishment of quantum correlations can be obtained by study-
ing the dynamics of entanglement entropies [10]. The
purpose of this Letter is to discuss a more basic way to
characterize both the internal dynamics and the quench
protocol itself by obtaining information on how far from
equilibrium the system has been taken. This can be done by
studying the statistics of a fundamental quantity: the work
W done on the system by changing its parameters.

The main observation behind this proposal is that the
quench protocol resembles a standard thermodynamic
transformation. However, since a quench takes the system
out of equilibrium, the work W, unlike in a quasistatic

process, is characterized by a probability distribution
PðWÞ [11–13]. Below, we focus on the characteristic func-
tion of PðWÞ, defined as

GðtÞ ¼
Z

dWeiWtPðWÞ; (1)

and study it for the prototypical example of a quantum
critical system, the quantum Ising chain. We first elucidate
a useful relation between GðtÞ and the Loschmidt echo, a
quantity emerging in various physical contexts, most nota-
bly the Fermi edge singularity [14], quantum chaos [15],
and the physics of dephasing [16,17]. Using this connec-
tion and a combination of field theoretic tools, we com-
pute exactly and analytically GðtÞ for global and local
quantum quenches. In both cases, we characterize the
fluctuations of the work and their probability distribution.
Interestingly, we show that for a local quench starting at the
quantum critical point the function PðWÞ displays an edge
singularity.
Let us start by briefly discussing the relation between the

characteristic function GðtÞ and the Loschmidt echo. For a
generic quench Hðg0Þ ! Hðg1Þ, the Loschmidt echo is
defined as LðtÞ ¼ jGðtÞj2, where the amplitude G is given
by

G ðtÞ ¼ heiHðg0Þte�iHðg1Þti: (2)

Here Hðg0Þ and Hðg1Þ are the initial and the final
Hamiltonian, respectively, and the average is taken with
respect to the initial equilibrium density matrix �0 ¼
exp½��Hðg0Þ�=Z. The Loschmidt echo can be seen as a
measure of the sensitivity of the system to the quench. The
connection with PðWÞ emerges by noticing that for a
generic quench the characterization of the work done on
the system requires two energy measurements: one before
it and one after it [12,13]. If the results of such measure-
ments are ~E and E, the work done is then W ¼ E� ~E.
Hence if j�ni are the eigenstates of energy En ofHðg1Þ, we
have that

PðWÞ ¼ X
n;m

�½W � ðEn � ~EmÞ�jh�n j �mij2Pm; (3)
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where j�mi are the eigenstates of H0 with energy ~Em, and
Pm ¼ exp½�� ~Em�=Z. The characteristic function is then

GðtÞ ¼ P
ne

iðEn� ~EmÞtjh�nj�mij2Pm, which is readily rec-
ognized to be the complex conjugate of the amplitude
defining the Loschmidt echo GðtÞ ¼ ½GðtÞ��. This equality
is actually a special case of the generalized quantum
Jarzynski equality [11,12] recently derived in Ref. [13]
for problems in which g is taken from g0 to g1 in a finite
time interval along a generic path gðtÞ. The Loschmidt
echo LðtÞ can be, in principle, measured by studying the
dephasing of an auxiliary two level system coupled to the
system of interest [15–17]. In the same setup, the proba-
bility distribution PðWÞ can be directly extracted from the
absorbtion spectra associated with optical transitions in the
auxiliary two level system [18].

For a global quench the work done is extensive.
Therefore in the thermodynamic limit the probability dis-
tribution PðwÞ of the work per unit volume w ¼ W=V will
be a strongly peaked function, with fluctuations scaling as

1=
ffiffiffiffi
V

p
. This suggests that P is a nontrivial function only for

small systems or for local quenches. Despite this fact, it is
interesting and instructive to study the work statistics for a
paradigmatic example: a zero temperature global quench
of the transverse field in a quantum Ising chain [19]. The
latter is defined by the Hamiltonian

H0 ¼ �J
X
i

�x
i �

x
iþ1 þ g�z

i ; (4)

where�x;z
i are spin operators at site i, J is an overall energy

scale (below we set J ¼ 1), and g is the strength of the
transverse field. The one-dimensional quantum Ising
model is the prototypical, exactly solvable example of a
quantum phase transition, with a quantum critical point at
gc ¼ 1 separating two mutually dual gapped phases, a
quantum paramagnetic one (g > gc) and a ferromagnetic
one (g < gc).

Let us now consider a global change at time t ¼ 0 of the
transverse field from an initial value g0 to a final one g1.
The analysis of the Loschmidt echo can be efficiently
performed after a Jordan-Wigner transformation [19]. In
the fermionic representation, the Hamiltonian Eq. (4) takes
the simple form

HðgÞ ¼ X
k>0

½g� cosðkÞ�ðcyk ck � c�kc
y
�kÞ

þ i sinðkÞðcyk cy�k � c�kckÞ; (5)

where ck are fermionic operators. The diagonal form

H ¼ P
k>0Ekð�y

k �k � ��k�
y
�kÞ, with energies Ek ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½g� cosðkÞ�2 þ sinðkÞ2p

, is achieved after a Bogoliubov

rotation ck ¼ ukðgÞ�k � ivkðgÞ�y
�k, cy�k ¼ ukðgÞ�y

�k �
ivkðgÞ�k. The coefficients are given by

ukðgÞ ¼ cosð�kðgÞÞ; vkðgÞ ¼ sinð�kðgÞÞ; (6)

where tanð2�kðgÞÞ ¼ sinðkÞ=½g� cosðkÞ�. In this represen-
tation, the Loschmidt echo for the quantum Ising model
following both a global and a local quench of g has been

recently shown to the expressible in terms of matrix deter-
minants, which were afterwards analyzed numerically
[16,17]. Below, we compute analytically the Loschmidt
echo employing field theoretic tools, which, in contrast to
previous approaches, have the advantage of giving clear
insight into the physics of the problem.
Our first task is to express the ground state j�0i of

energy E0 of the initial Hamiltonian Hðg0Þ in terms of
the eigenmodes �k diagonalizing Hðg1Þ. If we call �k the

eigenmodes of H0, it is easy to see that �k ¼ Uk�k �
iVk�

y
�k, where

Uk ¼ ukðg0Þukðg1Þ þ vkðg0Þvkðg1Þ; (7)

Vk ¼ ukðg0Þvkðg1Þ � vkðg0Þukðg1Þ: (8)

Hence the equation �kj�0i ¼ 0, characterizing our initial
state, can easily be solved giving

j�0i ¼ 1

N
exp

�
i
X
k>0

Vk

Uk

�y
k �

y
�k

�
j0i; (9)

where N is the normalization constant and j0i is the
vacuum of the fermions �k. The structure of this state
closely resembles that of integrable boundary states en-
countered in statistical field theory. In particular, the am-
plitude G is given by

G ðtÞ ¼ eiE0th�0je�iHðg1Þtj�0i

¼ e�i�Et

N 2
h0je

P
k
B�ðkÞ�k��ke

P
k
BðkÞe�2iEkt�y

�k
�y
k j0i;

(10)

where BðkÞ ¼ �iVk=Uk and �E ¼ E1 � E0, where E1 is
the ground state energy of Hðg1Þ. Up to an irrelevant
prefactor, Eq. (10) maps after a Wick rotation it ! �
onto the partition function of a two-dimensional classical
Ising model constrained on a cylinder of height � and with
boundary conditions on the two ends described by j�0i.
Hence, using techniques originally developed for inte-
grable boundary states [20] it is easy to obtain

G ðtÞ ¼ e�i�EteL
R

	

0
ðdk=2	Þ log½ð1þjBðkÞj2e�2iEktÞ=1þjBðkÞj2Þ�;

(11)

where L is the linear size of the chain.
We can now derive all the cumulants Cn of the

probability distribution of the work per unit length
PðwÞ by expanding in power series logðGðt=LÞÞ ¼Pþ1

n¼0 CnðitÞn=n!. As expected, from Eq. (11) we obtain

that, as L grows, Cn / 1=Ln�1, leading to the suppression
of all fluctuations in the thermodynamic limit. In order to
study the effects associated with the presence of the quan-
tum critical point, let us focus on the dependence on g0 and
g1 of the average work per unit length and of its variance.
The first is in general given by hwi ¼ �E=Lþ we, where
the excess work is we � 0, in agreement with standard
thermodynamic relations. The latter and the variance have
a particularly simple form if the final transverse field is
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large g1 � 1, in which case we ¼ g1ð1þ g20 � jg20 �
1jÞ=4g20 and hð�wÞ2i ¼ ðg21Þ=Lfg40 þ 4g20 � 3� sgn½g20 �
1�ðg40 � 4g20 þ 3Þg=8g40. These functions are plotted in

Fig. 1, where one may see that both we and hð�wÞ2i signal
the presence of the quantum critical point with disconti-
nuities in their derivative at g ¼ 1. More striking universal
effects associated with the quantum critical point are ob-
served by studying the asymptotics of GðtÞ at long times,
governed by the long wavelength modes. If, for example,
one looks at g0; g1 � 1, one may easily obtain that

G ðtÞ ’ G1 exp

�
Am1L

�
m1 �m0

m1

�
2 e�2im1t

ðimtÞ3=2
�
; (12)

where G1 is the asymptotic value attained by G [signaling
the presence of a delta function peak in PðwÞ], A is a
constant, and mi ¼ jgi � 1j. Passing again to imaginary
time, the dependence on t in the exponential corresponds to
the dependence on the thickness of the free energy of the
Ising model on a cylinder, which away from criticality is
exponentially cutoff by the correlation length 
 ¼ 1=m1.
At criticality, of course, it becomes a power law as a result
of the establishment of long range correlations. A more
detailed study of the statistics of PðWÞ for global quenches
will be reported elsewhere [18].

Let us now pass to a much more interesting situation in
which we expect the work done on the system to show
nontrivial fluctuations: a local quench of the Hamiltonian
from H0 ¼ HðgÞ to H0 þ V, where

V ¼ ��g�z
0: (13)

In order to capture the main differences with the previous
case, let us start by considering the case �g � 1 and
evaluate GðtÞ within a second-order cumulant expansion

G ðtÞ ¼ heiH0te�iðH0þVÞti ¼ hTe�i
R

t

0
dt0Vðt0Þi

¼ e�ihVite�ð1=2Þ
R

t

0
dt1dt2hT½Vðt1ÞVðt2Þ�i; (14)

where VðtÞ ¼ exp½iH0t�V exp½�iH0t�. Using the fermi-
onic representation of the spin operators, we obtain

V ¼ �g

L

X
k;k0

½ckcyk0 � cyk ck0 �: (15)

Hence writing V in terms of the eigenmodes �k of H0 and
substituting in Eq. (14), with the help of Wick theorem, we
obtain

G ðtÞ ’ e�i�Ete�fðtÞ; (16)

Here the energy shift �E is given by

�E ¼ �g
Z 	

�	

dk

2	
cosð2�kðgÞÞ� ð�gÞ2

2

Z 	

�	

dkdk0

ð2	Þ2

� Vðk; k0Þ
Ek þ E0

k

;

where Vðk; k0Þ ¼ sinð2�kÞ sinð2�k0 Þ þ 4 cosð�kÞ2 sinð�0kÞ2.
The most important information on the statistics of the

work done on the system is contained in

fðtÞ ¼ ð�gÞ2
2

Z 	

�	

dkdk0

ð2	Þ2
Vðk; k0Þ

ðEk þ E0
kÞ2

ð1� e�iðEkþEk0 ÞtÞ:
(17)

From this expression we may again estimate the various
cumulants of PðWÞ by expanding in power series fðtÞ. In
particular, the variance is given close to the critical point by

hð�WÞ2i ¼
�
�g

2	

�
2
�
2ð1þ 	2Þ

� ðg� 1Þ
�
2þ log

�jg� 1j
8

���
:

Despite the fact that this function has a logarithmic singu-
larity of the first derivative at g ¼ 1, as originally found in
studies of dephasing [17], it is important to notice that the
integral leading to this expression gets contributions from
all frequencies (not just small k). Hence universality does
not emerge substantially.
In order to obtain information on universal effects, one

has to study the asymptotics of GðtÞ for long times. This
can be done by looking at the asymptotic value attained by
f at infinity f1 ¼ ð�gÞ2=2R dkdk0=ð2	Þ2Vðk; k0Þ=ðEk þ
Ek0 Þ2. Close to the quantum critical point g ’ 1, this is
given by

f1 �
�
�g

2	

�
2
log

�
1

jg� 1j
�
: (18)

Hence as t ! þ1 we have

L ðtÞ ’ jg� 1j2ð�g=2	Þ2 : (19)

The Loschmidt echo vanishes at the quantum critical point
with a cusp singularity. As shown below, the vanishing of
the Loschmidt echo is the result of an orthogonality catas-
trophe, originating from the changing of a local scattering
potential in a nontrivial, yet gapless, effective fermionic
system. In particular, if we set g ¼ 1, the long time decay
of G is a power law:
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FIG. 1 (color online). A plot of the average excess work per
unit length we=g1 (solid line) and of the variance L=g21hð�wÞ2i
(dashed line) vs g0 for a global quench from g0 to g1 � 1. The
presence of the quantum critical point at g0 ¼ 1 is signaled by a
discontinuity in the derivative.
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G ðtÞ � e�i�EtðitÞ�ð�g=2	Þ2 : (20)

Hence we expect the probability distribution PðWÞ to dis-
play an edge singularity:

PðWÞ � �ðW � �EÞðW � �EÞð�g=2	Þ2�1: (21)

This expectation is readily confirmed by the exact solu-
tion of the problem for a local quench starting at the critical
point g ¼ 1. This can be obtained employing the scaling
limit of the quantum Ising model in the Majorana repre-
sentation

H0½’; �’� ¼
Z

drim’ �’� i

2
’@r’þ i

2
�’@r �’; (22)

where ’ and �’ are Majorana fermions, and the mass is
related to the transverse field by m ¼ g� 1. The quench
consists in going from H0 to H0 þ V, where V½’; �’� ¼
i�m’ð0Þ �’ð0Þ.

In order to compute G at criticality (m ¼ 0), let us use a
trick provided by Zuber and Itzykson [21]. We start by
computing ½GðtÞ�2. Introducing two copies of the Majorana
fermions, ’1;2 and �’1;2, we have

½GðtÞ�2 ¼ heiH 0te�iðH 0þV Þti; (23)

where H 0 ¼ H0½’1; �’1� þH0½’2; �’2� and V ¼
V½’1; �’1� þ V½’2; �’2�. The most elegant way to pro-
ceed consists now in combining the Majorana fermions

into Dirac fermions �R ¼ ð’1 þ i’2Þ=
ffiffiffi
2

p
and �L ¼

ð �’1 þ i �’2Þ=
ffiffiffi
2

p
, and then introducing a pair of non-

local operators [22] defined as �þðrÞ ¼ ½�RðrÞ þ
�Lð�rÞ�= ffiffiffi

2
p

, and ��ðrÞ ¼ ½�RðrÞ ��Lð�rÞ�= ffiffiffi
2

p
i. In

these terms,

H 0 ¼
Z

dr�y
þð�i@rÞ�þ þ�y�ð�i@rÞ��; (24)

V ¼ �m½�y
þð0Þ�þð0Þ ��y�ð0Þ��ð0Þ�: (25)

Physically, it is now evident that we have two chiral
modes subject to local potential scattering of opposite sign
characterized by phase shifts 	� ¼ 	�m=2. The compu-
tation of G2 is now a standard problem solvable by boson-
ization [14,23]. We find that

G ðtÞ ¼
�

1

1þ it

�ð�=	Þ2
: (26)

The complex conjugate of this expression is readily recog-
nized to be the characteristic function of the Gamma
probability distribution

PðwÞ ¼ wð�=	Þ2�1e�w

�½ð�	Þ2�
; (27)

which indeed displays an edge singularity with a exponent
ð�=	Þ2 ¼ ½�g=ð2	Þ�2 consistent with the one obtained by
the cumulant expansion.

In conclusion, after elucidating the connection between
the probability distribution PðWÞ of the work done on a
system in a quantum quench and the Loschmidt echo, we
characterized PðWÞ for global and local quenches of the
transverse field in a quantum Ising chain. As mentioned
before, the experimental measurement of PðWÞ requires
the realization of an optical absorbtion experiment in a
fully controllable setting. Recent proposals for the realiza-
tion of quantum spin chains using bosonic atoms in optical
lattices [24] give a possible, concrete way to pursue this
goal with the available experimental tools.
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