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We experimentally demonstrate increased diffuse transmission of light through strongly scattering

materials. Wave front shaping is used to selectively couple light to the open transport eigenchannels,

specific solutions of Maxwell’s equations which the sample transmits fully, resulting in an increase of up

to 44% in the total angle-integrated transmission compared to the case where plane waves are incident.

The results for each of several hundreds of experimental runs are in excellent quantitative agreement with

random matrix theory. From our measurements we conclude that with perfectly shaped wave fronts the

transmission of a disordered sample tends to a universal value of 2=3, regardless of the thickness.
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The transport of waves in strongly scattering media is,
usually, well described by diffusion theory. However, the
diffusion equation does not take into account interference.
Interference gives rise to fundamental effects such as en-
hanced backscattering [1,2] and Anderson localization of
light [3–5]. Such interference effects may be observed with
incident light in a single freely propagating mode (scatter-
ing channel), such as a plane incident wave. In 1984,
Dorokhov predicted a striking multichannel interference
effect. Using randommatrix theory (RMT), he showed that
the transmission through a diffusive material is the result of
a small number of open eigenchannels with a transmission
coefficient of close to one [6]. Each eigenchannel [7]
corresponds to a specific linear combination of multiple
free modes. Waves coupled to an open eigenchannel will
be fully transmitted through a disordered sample, even if
the sample is optically thick. In contrast, an incident plane
wave couples mainly to closed eigenchannels (with a trans-
mission coefficient of close to zero) and, consequently,
most of its power is diffusely reflected. This result was
originally obtained for electron transport in a wire. Later, it
was generalized to a slab geometry [8] and to optical
systems [9,10].

Universal conductance fluctuations, which are random
fluctuations in the coupling of waves to open and closed
eigenchannels, have been observed in experiments [11–
14]; however, no controlled coupling to eigenchannels has
been reported so far. Here we experimentally demonstrate
the injection of light into the open eigenchannels of a
strongly disordered sample, resulting in a large increase
of the diffusely transmitted intensity. We accomplish this
by shaping the wave front of the incident light, which
amounts to individually controlling the phases of multiple
incoming free modes.

The transmission amplitudes of waves through a meso-
scopic medium are described by a transmission matrix t.
The field in the outgoing free modes at the back of the
sample is given by

Eb ¼
XN
a

tbaEa; (1)

where indices a and b label incident and transmitted free
modes, respectively. N is the total number of incident free
modes. Any complete orthogonal set of modes may be
chosen; in mesoscopic physics it is usual to choose the
transverse modes of a perfect waveguide as a basis, one
may also work with an overcomplete basis of incident
angles or diffraction limited spots on the sample surface.
Transmission eigenchannels are defined for each individ-
ual sample by decomposing the transmission matrix as t ¼
UT VT . Here U and V are unitary matrices that perform
the basis transformations between free modes outside the
sample and eigenchannels inside. T is a real diagonal
matrix containing eigenchannel transmission coefficients.
We use a spatial light modulator (see Fig. 1) to shape the

wave front of the incident light. The computer program
that controls the wave front shaper optimizes the intensity
of a small target spot at the back surface of the sample
using the measured intensity in the target as feedback [15].
This wave front shaping method creates a high intensity
focus through the sample, which by itself is not a result of
the bimodal distribution of the eigenchannel transmission
coefficients. Importantly, the disordered background
speckle around the focus turns out to be a very sensitive
probe of the distribution of the elements of T .
For example, for the limiting distribution where all

eigenchannels are completely open T ¼ 0 or completely
closed T ¼ 1 (the so-called maximal fluctuations [9]),
only open eigenchannels will contribute to the intensity
in the target. Therefore, the optimization algorithm will
select only linear combinations corresponding to open
eigenchannels. As a result, the diffuse transmission will
increase so that the ideally shaped wave front will have a
total transmission of unity. The distribution predicted by
Dorokhov [6] is close to this limiting case.
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We now proceed to introduce a quantitative measure of
the control we exert over a shaped wave front. Our algo-
rithm maximizes the intensity in a diffraction limited spot,
which is exactly one of the transmitted free modes. We
label this special target mode with the index �. The ideally

shaped incident wave front Eopt;�
a for maximizing the

intensity in � is given by [16]

Eopt;�
a ¼ ðT�Þ�1=2t��a; T� � XN

a

jt�aj2; (2)

where T� normalizes the total incident power. Our opti-

mization algorithm proceeds as follows: the matrix ele-
ments t�a are measured up to a constant prefactor by

cycling the phase of the light in the incident mode a while
observing the intensity in target mode � [15]. After N
phases have been measured, the optimized incident wave
front is constructed according to Eq. (2). This optimized
wave front couples to a superposition of eigenchannels,
mostly to channels with high transmission eigenvalues.

In any experiment, the resolution and the spatial extent
of the generated field are finite. Therefore, it will never be
possible to exactly construct the wave front described by

Eq. (2). To quantify how well the actual incident field Eact;�
a

matches the optimal incident field Eopt;�
a , we introduce the

overlap coefficient � as

� � XN
a

ðEopt;�
a Þ�Eact;�

a : (3)

The degree of intensity control is j�j2. We can now write
any incident wave front as a linear superposition of the
perfect wave front and an error term

Eact;�
a ¼ �E

opt;�
a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�j2

q
�Ea; (4)

where the error term �Ea is normalized. For ideal control
over the incident wave front j�j2 ¼ 1. In earlier experi-
ments [15] the degree of control was relatively low
(j�j2 � 0:1), and total transmission did not increase meas-
urably. In this Letter, we discuss experiments at much
higher values of j�j2, up to 0.33.

The experimental apparatus (see Fig. 1) is designed to
approach the optimal wave front as closely as possible, by
controlling the largest possible fraction of the incident free
modes. An expanded beam from a 632.8 nm HeNe laser is
rotated to a 45� linear polarization by a half wave plate and
impinges on a polarizing beam splitter cube. Horizontally
and vertically polarized beams are modulated with separate
reflective liquid crystal displays (Holoeye LC-R 2500) and
then recombined, to provide control over modes with both
polarizations. We used a 4-pixel macropixel modulation
method [17] to control the phase of the light without
residual amplitude modulation. The modulator is divided
into 3816 independently programmable segments. A com-
puter programs the modulators using feedback from a

camera as discussed below. A sequential optimization
algorithm [15] was used to optimize the wave front [16].
A high numerical aperture objective (NA ¼ 0:95, Zeiss
Achroplan 63�) projects the shaped wave front onto the
sample.
Each sample consists of a layer of spray-painted ZnO

particles on a standard glass microscope cover slip. The
particles have an average diameter of 200 nm, which
makes them strongly scattering for visible light. The
mean free path was determined by measuring the total
transmission and equals 0:85� 0:15 �m at a wavelength
of 632.8 nm. We used samples with thicknesses of 5.7 and
11:3 �m. The samples were positioned in the focal plane
of the microscope objective to minimize the size of the
diffuse spot, and thereby the number of contributing
modes. The number of such contributing free modes was
estimated from the intensity profile of the transmitted light
[12] to be 5:5� 103 and 1:0� 104 modes, for the thin and
the thick samples, respectively. The samples were mounted
on a motorized stage to translate them in the focal plane.
A high NA oil-immersion objective (Nikon TIRF 60�=

NA ¼ 1:49) collects the transmitted light. The transmitted
light is split into horizontal and vertical polarizations by a
beam splitter cube. A second polarizer improves the ex-
tinction ratio for reflected light. The magnification of the
detection system is 180� , enough to well-resolve indi-
vidual speckles. A camera measures the power of the
horizontally polarized light in a disk with a diameter of
0:11 �m at the sample, which is smaller than a single
speckle, to provide feedback for the optimization
algorithm.
After optimization, a calibrated neutral density filter

with a transmission of 1:4� 10�3 is placed in front of
the camera to measure the high intensity in the target. A
second camera images the intensity of the vertically polar-
ized light.
Optimizing the incident wave front caused the intensity

in the target to increase dramatically. In Fig. 2 we plot the
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FIG. 1 (color). Experimental setup. HeNe, expanded 632.8 nm
HeNe laser; �=2, half wave plate; PBS, polarizing beam splitter
cube; SLM, spatial light modulator. A, iris diaphragm; 63�,
microscope objective; 60�, oil-immersion microscope objec-
tive; S, sample; P, polarizer; ND, neutral density filter; L1, L2,
L3, lenses with focal length of, respectively, 250, 200, and
600 mm. ND and S are translated by computer controlled stages.
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transmitted intensity through a 11:3 �m-thick sample for a
nonoptimized wave front and for the optimized wave front
[16]. Before optimization, the transmitted intensity forms a
diffuse spot on the back surface of the sample. After
optimization, a strong peak emerges in the target focus.
The intensity increase in the center of the target was a
factor of 746� 28. After optimization, 2.3% of the inci-
dent power is transmitted into the target focus.

More importantly, the intensity in an area with a radius
of approximately 5 �m around the target also increased,
even though the algorithm did not use this intensity as
feedback. This observation indicates that we have redis-
tributed the incident light from closed eigenchannels to
open eigenchannels. As a result of optimizing a single
target point, the total angle-integrated transmission in-
creased from 0.23 to 0.31. This change amounts to a
relative increase of 35%.

For a quantitative analysis we need to know the degree
of control j�j2. Factors like measurement noise and ther-
mal drift result in a different degree of control for each
single run of the experiment. Fortunately, it is possible to
measure j�j2 directly for each run by observing the inten-
sity in the target. Only the controlled fraction of the inci-
dent wave front contributes to the intensity in the target.
The transmission to the target mode � equals

jEact
� j2 ¼

��������
XN
a

t�aE
act;�
a

��������
2

(5)

¼ j�j2
��������
XN
a

t�aE
opt;�
a

��������
2

; (6)

where we used Eq. (4) and the fact that the error term is
orthogonal to the ideal wave front. By substituting Eq. (2)
we obtain

jEact
� j2 ¼ j�2jT�: (7)

Equation (7) allows us to obtain the degree of control by
measuring the intensity in the target focus jEact

� j2 and T�. In

the experimental procedure it is very impractical to mea-
sure T�. Therefore, we approximate T� ¼ TtotN=M. Here,

Ttot is the ensemble averaged total transmission of an
unoptimized wave front, and M is the number of trans-
mitted free modes. Since our samples are sandwiched
between a glass substrate on one side and air on the other
side, the number of modes on the back of the sample is
larger andM ¼ n2N, with n ¼ 1:52 the refractive index of
the substrate. This approximation neglects the C2 fluctua-
tions [18] in the total transmission, which are in the order
of 2% for our samples.

For the experimental run that is shown in Fig. 2, we find
a degree of control of j�j2 ¼ 0:23. This means that the
incident field is a linear superposition of the perfectly
shaped wave front (carrying 23% of the incident power)
and a noise term (carrying the rest of the power). The total,

angle-integrated transmission Tact
tot contains contributions

both from the perfectly shaped wave front and from the
noise term,

Tact
tot ¼ Tc þ ð1� j�j2ÞTtot; (8)

where Tc is the part of the transmission resulting from the
perfectly shaped fraction of the incident wave front. By
substituting Eq. (2) into Eq. (1) and summing the power in
all transmitted free modes, we find

Tc ¼ j�j2 X
M

b

1

T�

��������
XN
a

tbat
�
�a

��������
2� j�j2C4;2: (9)

We evaluate C4;2 theoretically by averaging over all pos-

sible target modes �. We assume that C4;2 is self-

averaging, which is verified by our experiment.
Neglecting small correlation terms between numerator
and denominator we find

C4;2 ¼ 1

hT�i�
�XM

b

��������
XN
a

tbat
�
�a

��������
2
�
�
¼ Trtyttyt

Trtty
: (10)

From Eq. (10), it becomes clear that C4;2 is a measure for

the width of the distribution of the transmission eigenval-
ues [9]. By measuring the total transmission after optimiz-
ing the incident wave front, we have direct experimental
access to this value for each single sample. Since we
measured j�j2 separately, we can use Eqs. (8) and (9) to
obtain C4;2 from a single, nonideal experimental run. In the

particular run in Fig. 2, we find C4;2 ¼ 0:62.
The ensemble averaged value for C4;2 was derived using

RMT. RMT [19] predicts hC4;2i ¼ 2=3 for a nonabsorbing

system far away from the localization transition, regardless
of the original transmission coefficient of the system. For a
single realization of disorder, we found C4;2 ¼ 0:62. To

FIG. 2 (color). Intensity distribution of horizontally polarized
light in a 30 �m� 30 �m square area at the back of the sample.
(a) For a nonoptimized incident wave front. (b) For an optimized
wave front. (c) Intensity summed in the y direction to average
over speckle. Dashed curve, transmission of nonoptimized wave
front; solid curve, transmission of optimized wave front.
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investigate the universality of this result and to compare the
measured values with RMT, we performed automated se-
quences of measurements. The sample was translated be-
tween the runs to obtain different realizations of disorder.

The intensity increase was different for each of the
optimizations in the sequence. The increase in the inte-
grated transmission varied from a few percent to a maxi-
mum of 44%. These variations are the result of drift due to
varying environmental conditions. While drift is undesir-
able, it gives us a wide range of j�j2 to investigate. The
degree of control j�j2 was determined for each of the runs
using Eq. (7). Then, using Eq. (8), we isolated Tc.

In Fig. 3 we plotted Tc versus j�j2 for hundreds of
measurements. To determine the effect of the sample
thickness, two different samples were used: one with a
thickness of 5:7� 0:5 �m, and one that is approximately
twice as thick (11:3� 0:5 �m). All data points collapse to
a single line. Our data show that the transmission coeffi-
cient of an ideally shaped wave front does not depend on
the sample thickness. A linear regression gives hC4;2i ¼
0:68� 0:07 where the uncertainty follows from a worst
case estimate of the systematical errors in the experiment.
This value is in excellent agreement with RMT.

We have shown experimental evidence of controlled
coupling of light into open transmission eigenchannels in
opaque, strongly scattering materials. The coupling to open
eigenchannels was enhanced by using a wave front shaping
algorithm to optimize transmission to a focus, and detected
by measuring the angle-averaged transmission intensity,
which showed a relative increase of up to 44%. We quan-
titatively compared the results for different samples and

different realizations of disorder. All results showed a
universal behavior that is in excellent quantitative agree-
ment with random matrix theory. Our results demonstrate
that RMT of wave transport can successfully be applied to
open systems and single realizations of disorder. This
conclusion is relevant for the propagation of electromag-
netic waves, matter waves, and sound in open, strongly
scattering environments.
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FIG. 3 (color). Total transmission of the controlled fraction of
the wave front. Data from two different samples collapse to a
universal curve. There are no adjustable parameters in the data
processing or the theory. Circles, results for 11:3 �m-thick
sample; squares, results for 5:7 �m-thick sample; star, data point
corresponding to the experimental run that was shown in detail
in Fig. 2; solid line, linear regression with a slope of 0.68; dotted
line, slope of 2=3 as predicted by RMT.
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